These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29524875)

  • 21. Effects of temperature and SO
    Royko M; Galloway B; Meeks ND; Padak B
    J Environ Sci (China); 2019 May; 79():67-73. PubMed ID: 30784465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification characteristics of fine particulate matter treated by a self-flushing wet electrostatic precipitator equipped with a flexible electrode.
    Su L; Du Q; Wang Y; Dong H; Gao J; Wang M; Dong P
    J Air Waste Manag Assoc; 2018 Jul; 68(7):725-736. PubMed ID: 29652226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Characteristics of Chemical Components in PM₂.₅ from the Coal Dust of Power Plants].
    Wang YX; Peng L; Wang Y; Zhang T; Liu HL; Mu L
    Huan Jing Ke Xue; 2016 Jan; 37(1):60-5. PubMed ID: 27078941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.
    Hayashi T; Lee TG; Hazelwood M; Hedrick E; Biswas P
    J Air Waste Manag Assoc; 2000 Jun; 50(6):922-9. PubMed ID: 10902384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rethinking atmospheric mercury.
    Renner R
    Environ Sci Technol; 2004 Dec; 38(23):448A-449A. PubMed ID: 15597864
    [No Abstract]   [Full Text] [Related]  

  • 26. Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury.
    Castro MS; Sherwell J
    Environ Sci Technol; 2015 Dec; 49(24):14000-7. PubMed ID: 26606506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of a 0.20 μm particulate matter filter decreases cytotoxicity in lung epithelial cells following air-liquid interface exposure to motorcycle exhaust.
    Yu T; Zhang X; Zhong L; Cui Q; Hu X; Li B; Wang Z; Dai Y; Zheng Y; Bin P
    Environ Pollut; 2017 Aug; 227():287-295. PubMed ID: 28477553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of ammonia on mercury leaching from coal fly ash.
    Wang J; Wang T; Mallhi H; Liu Y; Ban H; Ladwig K
    Chemosphere; 2007 Nov; 69(10):1586-92. PubMed ID: 17604819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements.
    Landis MS; Ryan JV; ter Schure AF; Laudal D
    Environ Sci Technol; 2014 Nov; 48(22):13540-8. PubMed ID: 25325168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Experimental study on emission characteristics of PM10 in coal-fired boilers].
    Guo X; Chen D; Zheng CG; Sui JC; Xu MH
    Huan Jing Ke Xue; 2008 Mar; 29(3):587-92. PubMed ID: 18649512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of the Optimum Removal Efficiency of Fine Particulate Matter Using Activated Carbon Fiber (ACF).
    Kim MK; Jang Y; Park D
    Int J Environ Res Public Health; 2020 Nov; 17(21):. PubMed ID: 33171737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review.
    Mukherjee AB; Zevenhoven R
    Sci Total Environ; 2006 Sep; 368(1):384-92. PubMed ID: 16183102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas.
    Chi Y; Yan N; Qu Z; Qiao S; Jia J
    J Hazard Mater; 2009 Jul; 166(2-3):776-81. PubMed ID: 19153004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions between mercury and dry FGD ash in simulated post combustion conditions.
    Wu S; Wang S; Gao J; Wu Y; Chen G; Zhu Y
    J Hazard Mater; 2011 Apr; 188(1-3):391-8. PubMed ID: 21334138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
    He J; Duan C; Lei M; Zhu X
    Environ Technol; 2016; 37(1):28-38. PubMed ID: 26121324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (southern Baltic).
    Lewandowska AU; Bełdowska M; Witkowska A; Falkowska L; Wiśniewska K
    Ecotoxicol Environ Saf; 2018 Aug; 157():350-357. PubMed ID: 29631090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of H ₂SO₄ and O ₂ on Hg⁰ uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions.
    Wei Y; Yu D; Tong S; Jia CQ
    Environ Sci Technol; 2015 Feb; 49(3):1706-12. PubMed ID: 25590356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mercury species and their association with carbonaceous compositions, bromine and iodine in PM2.5 in Shanghai.
    Duan L; Xiu G; Feng L; Cheng N; Wang C
    Chemosphere; 2016 Mar; 146():263-71. PubMed ID: 26735726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of mercury in by-products from a Dutch co-combustion power station.
    Rallo M; Lopez-Anton MA; Meij R; Perry R; Maroto-Valer MM
    J Hazard Mater; 2010 Feb; 174(1-3):28-33. PubMed ID: 19773118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atmospheric particulate mercury at the urban and forest sites in central Poland.
    Siudek P; Frankowski M; Siepak J
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2341-52. PubMed ID: 26411447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.