These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 29525035)
1. Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. Kotawong K; Chaijaroenkul W; Muhamad P; Na-Bangchang K J Pharmacol Sci; 2018 Feb; 136(2):51-56. PubMed ID: 29525035 [TBL] [Abstract][Full Text] [Related]
2. Effect of β-Eudesmol on NQO1 suppression-enhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. Srijiwangsa P; Ponnikorn S; Na-Bangchang K BMC Pharmacol Toxicol; 2018 Jun; 19(1):32. PubMed ID: 29914576 [TBL] [Abstract][Full Text] [Related]
3. Proteomics Analysis for Identification of Potential Cell Signaling Pathways and Protein Targets of Actions of Atractylodin and β-Eudesmol Against Cholangiocarcinoma. Kotawong K; Chaijaroenkul W; Roytrakul S; Phaonakrop N; Na-Bangchang K Asian Pac J Cancer Prev; 2020 Mar; 21(3):621-628. PubMed ID: 32212786 [TBL] [Abstract][Full Text] [Related]
4. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Plengsuriyakarn T; Karbwang J; Na-Bangchang K Clin Exp Pharmacol Physiol; 2015 Mar; 42(3):293-304. PubMed ID: 25545782 [TBL] [Abstract][Full Text] [Related]
5. A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb) DC. in healthy Thai subjects. Kulma I; Panrit L; Plengsuriyakarn T; Chaijaroenkul W; Warathumpitak S; Na-Bangchang K BMC Complement Med Ther; 2021 Feb; 21(1):61. PubMed ID: 33579265 [TBL] [Abstract][Full Text] [Related]
6. Lobaplatin induces apoptosis and arrests cell cycle progression in human cholangiocarcinoma cell line RBE. Wang Z; Tang X; Zhang Y; Qi R; Li Z; Zhang K; Liu Z; Yang X Biomed Pharmacother; 2012 Apr; 66(3):161-6. PubMed ID: 22425181 [TBL] [Abstract][Full Text] [Related]
7. Growth inhibitory effect of β-eudesmol on cholangiocarcinoma cells and its potential suppressive effect on heme oxygenase-1 production, STAT1/3 activation, and NF-κB downregulation. Mathema VB; Chaijaroenkul W; Karbwang J; Na-Bangchang K Clin Exp Pharmacol Physiol; 2017 Nov; 44(11):1145-1154. PubMed ID: 28732110 [TBL] [Abstract][Full Text] [Related]
8. Cytotoxic activity and molecular targets of atractylodin in cholangiocarcinoma cells. Mathema VB; Chaijaroenkul W; Na-Bangchang K J Pharm Pharmacol; 2019 Feb; 71(2):185-195. PubMed ID: 30324612 [TBL] [Abstract][Full Text] [Related]
9. Atractylodin and β-eudesmol from Atractylodes lancea (Thunb.) DC. Inhibit Cholangiocarcinoma Cell Proliferation by Downregulating the Notch Signaling Pathway. Vanaroj P; Chaijaroenkul W; Na-Bangchang K Asian Pac J Cancer Prev; 2023 Feb; 24(2):551-558. PubMed ID: 36853304 [TBL] [Abstract][Full Text] [Related]
10. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells. Ke F; Wang Z; Song X; Ma Q; Hu Y; Jiang L; Zhang Y; Liu Y; Zhang Y; Gong W Drug Des Devel Ther; 2017; 11():1753-1766. PubMed ID: 28670110 [TBL] [Abstract][Full Text] [Related]
11. Indirubin-3'-oxime suppresses human cholangiocarcinoma through cell-cycle arrest and apoptosis. Lee MY; Li YZ; Huang KJ; Huang HC; Lin CY; Lee YR Eur J Pharmacol; 2018 Nov; 839():57-65. PubMed ID: 30267650 [TBL] [Abstract][Full Text] [Related]
12. The Potential of Atractylodin-Loaded PLGA Nanoparticles as Chemotherapeutic for Cholangiocarcinoma. Muhamad N; Plengsuriyakarn T; Chittasupho C; Na-Bangchang K Asian Pac J Cancer Prev; 2020 Apr; 21(4):935-941. PubMed ID: 32334453 [TBL] [Abstract][Full Text] [Related]
13. Embryotoxicity evaluation of atractylodin and β-eudesmol using the zebrafish model. Tshering G; Plengsuriyakarn T; Na-Bangchang K; Pimtong W Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jan; 239():108869. PubMed ID: 32805444 [TBL] [Abstract][Full Text] [Related]
14. The Proteomics and Metabolomics Analysis for Screening the Molecular Targets of Action of β-Eudesmol in Cholangiocarcinoma. Kotawong K; Chajaroenkul W; Roytrakul S; Phaonakrop N; Na-Bangchang K Asian Pac J Cancer Prev; 2021 Mar; 22(3):909-918. PubMed ID: 33773557 [TBL] [Abstract][Full Text] [Related]
15. Modulatory Effects of Atractylodin and β-Eudesmol on Human Cytochrome P450 Enzymes: Potential Drug-Drug Interactions. Thiengsusuk A; Plengsuriyakarn T; Na-Bangchang K Molecules; 2023 Mar; 28(7):. PubMed ID: 37049902 [TBL] [Abstract][Full Text] [Related]
16. Anti-angiogenic effects of beta-eudesmol and atractylodin in developing zebrafish embryos. Tshering G; Pimtong W; Plengsuriyakarn T; Na-Bangchang K Comp Biochem Physiol C Toxicol Pharmacol; 2021 May; 243():108980. PubMed ID: 33493664 [TBL] [Abstract][Full Text] [Related]
17. Apoptosis of human cholangiocarcinoma cell lines induced by β-escin through mitochondrial caspase-dependent pathway. Shen DY; Kang JH; Song W; Zhang WQ; Li WG; Zhao Y; Chen QX Phytother Res; 2011 Oct; 25(10):1519-26. PubMed ID: 21394804 [TBL] [Abstract][Full Text] [Related]
18. Schisandrin B inhibits cell proliferation and induces apoptosis in human cholangiocarcinoma cells. Yang X; Wang S; Mu Y; Zheng Y Oncol Rep; 2016 Oct; 36(4):1799-806. PubMed ID: 27499090 [TBL] [Abstract][Full Text] [Related]
19. Antiproliferative activity of rosamultic acid is associated with induction of apoptosis, cell cycle arrest, inhibition of cell migration and caspase activation in human gastric cancer (SGC-7901) cells. Sui CG; Meng FD; Li Y; Jiang YH Phytomedicine; 2015 Aug; 22(9):796-806. PubMed ID: 26220626 [TBL] [Abstract][Full Text] [Related]
20. Aqueous extract of Agrostemma githago seed inhibits caspase-3 and induces cell-cycle arrest at G1 phase in AGS cell line. Bohlooli S; Bohlooli S; Aslanian R; Nouri F; Teimourzadeh A J Ethnopharmacol; 2015 Dec; 175():295-300. PubMed ID: 26196402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]