BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29525156)

  • 1. Effect of electrohydrodynamic technique as a complementary process for cellulose extraction from bagasse: Crystalline to amorphous transition.
    Ahmadzadeh S; Nasirpour A; Harchegani MB; Hamdami N; Keramat J
    Carbohydr Polym; 2018 May; 188():188-196. PubMed ID: 29525156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse.
    Vanitjinda G; Nimchua T; Sukyai P
    Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pretreatment of Cellulose from Sugarcane Bagasse with Xylanase for Improving Dyeability with Natural Dyes.
    Senapitakkul V; Vanitjinda G; Torgbo S; Pinmanee P; Nimchua T; Rungthaworn P; Sukatta U; Sukyai P
    ACS Omega; 2020 Nov; 5(43):28168-28177. PubMed ID: 33163799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride.
    Mulinari DR; Cruz TG; Cioffi MO; Voorwald HJ; Da Silva ML; Rocha GJ
    Carbohydr Res; 2010 Sep; 345(13):1865-71. PubMed ID: 20599190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of microcrystalline cellulose from roselle fibers.
    Kian LK; Jawaid M; Ariffin H; Alothman OY
    Int J Biol Macromol; 2017 Oct; 103():931-940. PubMed ID: 28549863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and application of cellulose acetate synthesized from sugarcane bagasse.
    Candido RG; Godoy GG; Gonçalves AR
    Carbohydr Polym; 2017 Jul; 167():280-289. PubMed ID: 28433164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber.
    Fouad H; Kian LK; Jawaid M; Alotaibi MD; Alothman OY; Hashem M
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33297332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber.
    Rasheed M; Jawaid M; Karim Z; Abdullah LC
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization.
    Evans SK; Wesley ON; Nathan O; Moloto MJ
    Heliyon; 2019 Oct; 5(10):e02635. PubMed ID: 31687498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms.
    Ahmed-Haras MR; Kao N; Ward L; Islam MS
    Int J Biol Macromol; 2020 Mar; 146():150-161. PubMed ID: 31837363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spectral property of one-dimensional rodlike nano cellulose].
    Zhang LP; Tang HW; Qu P; Li S; Qin Z; Sun SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1097-100. PubMed ID: 21714268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide.
    Ventura-Cruz S; Flores-Alamo N; Tecante A
    Int J Biol Macromol; 2020 Jul; 155():324-329. PubMed ID: 32234444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.
    Zhang H; Wu S
    Bioresour Technol; 2014 Apr; 158():161-5. PubMed ID: 24603488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Ionic Liquids in the Elaboration of Nanofibers of Cellulose Bagasse from
    Márquez-Ríos E; Robles-García MÁ; Rodríguez-Félix F; Aguilar-López JA; Reynoso-Marín FJ; Tapia-Hernández JA; Cinco-Moroyoqui FJ; Ceja-Andrade I; González-Vega RI; Barrera-Rodríguez A; Aguilar-Martínez J; Omar-Rueda-Puente E; Del-Toro-Sánchez CL
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO).
    Ruzene DS; Silva DP; Vicente AA; Teixeira JA; de Amorim MT; Gonçalves AR
    Appl Biochem Biotechnol; 2009 May; 154(1-3):38-47. PubMed ID: 19214797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials.
    Pereira PHF; Ornaghi HL; Arantes V; Cioffi MOH
    Carbohydr Res; 2021 Jan; 499():108227. PubMed ID: 33388571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of polymer coated partially esterified sugarcane bagasse for separation of oil from seawater.
    Abdelwahab NA; Shukry N; El-Kalyoubi SF
    Environ Technol; 2017 Aug; 38(15):1905-1914. PubMed ID: 27731784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique.
    de Melo Brites M; Cerón AA; Costa SM; Oliveira RC; Ferraz HG; Catalani LH; Costa SA
    Enzyme Microb Technol; 2020 Jan; 132():109384. PubMed ID: 31731948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of cellulose/hydrous niobium oxide hybrid.
    Maschio LJ; Pereira PH; Da Silva ML
    Carbohydr Polym; 2012 Jul; 89(3):992-6. PubMed ID: 24750890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.