These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 29525624)
1. Presence, mobility and bioavailability of toxic metal(oids) in soil, vegetation and water around a Pb-Sb recycling factory (Barcelona, Spain). Mykolenko S; Liedienov V; Kharytonov M; Makieieva N; Kuliush T; Queralt I; Marguí E; Hidalgo M; Pardini G; Gispert M Environ Pollut; 2018 Jun; 237():569-580. PubMed ID: 29525624 [TBL] [Abstract][Full Text] [Related]
2. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Mukhopadhyay S; Rana V; Kumar A; Maiti SK Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831 [TBL] [Abstract][Full Text] [Related]
3. Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. da Silva WR; da Silva FBV; Araújo PRM; do Nascimento CWA Ecotoxicol Environ Saf; 2017 Oct; 144():522-530. PubMed ID: 28675866 [TBL] [Abstract][Full Text] [Related]
4. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
5. Response of spontaneous plants from an ex-mining site of Elba island (Tuscany, Italy) to metal(loid) contamination. Pistelli L; D'Angiolillo F; Morelli E; Basso B; Rosellini I; Posarelli M; Barbafieri M Environ Sci Pollut Res Int; 2017 Mar; 24(8):7809-7820. PubMed ID: 28130721 [TBL] [Abstract][Full Text] [Related]
6. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk. Li X; Wu T; Bao H; Liu X; Xu C; Zhao Y; Liu D; Yu H Environ Sci Pollut Res Int; 2017 Aug; 24(24):19749-19766. PubMed ID: 28685332 [TBL] [Abstract][Full Text] [Related]
7. Native plant species growing on the abandoned Zaida lead/zinc mine site in Morocco: Phytoremediation potential for biomonitoring perspective. Diallo A; Hasnaoui SE; Dallahi Y; Smouni A; Fahr M PLoS One; 2024; 19(6):e0305053. PubMed ID: 38924033 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Zhu G; Xiao H; Guo Q; Song B; Zheng G; Zhang Z; Zhao J; Okoli CP Ecotoxicol Environ Saf; 2018 Apr; 151():266-271. PubMed ID: 29407559 [TBL] [Abstract][Full Text] [Related]
9. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Li P; Lin C; Cheng H; Duan X; Lei K Ecotoxicol Environ Saf; 2015 Mar; 113():391-9. PubMed ID: 25540851 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the metal(loid)s phytoextraction potential of wild plants grown in three antimony mines in southern China. Zhang Y; Song B; Zhu L; Zhou Z Int J Phytoremediation; 2021; 23(8):781-790. PubMed ID: 33307730 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site. Quan SX; Yan B; Yang F; Li N; Xiao XM; Fu JM Environ Sci Pollut Res Int; 2015 Jan; 22(2):1290-8. PubMed ID: 25138553 [TBL] [Abstract][Full Text] [Related]
13. Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland). Tyszka R; Pietranik A; Kierczak J; Ettler V; Mihaljevič M; Medyńska-Juraszek A Environ Sci Pollut Res Int; 2016 Dec; 23(23):24350-24363. PubMed ID: 27655618 [TBL] [Abstract][Full Text] [Related]
14. Heavy metals distribution and risk assessment in soil from an informal E-waste recycling site in Lagos State, Nigeria. Isimekhai KA; Garelick H; Watt J; Purchase D Environ Sci Pollut Res Int; 2017 Jul; 24(20):17206-17219. PubMed ID: 28589272 [TBL] [Abstract][Full Text] [Related]
15. Study of different environmental matrices to access the extension of metal contamination along highways. Zanello S; Melo VF; Nagata N Environ Sci Pollut Res Int; 2018 Feb; 25(6):5969-5979. PubMed ID: 29236242 [TBL] [Abstract][Full Text] [Related]
16. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Pratas J; Favas PJ; D'Souza R; Varun M; Paul MS Chemosphere; 2013 Feb; 90(8):2216-25. PubMed ID: 23098582 [TBL] [Abstract][Full Text] [Related]
17. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia. Fitamo D; Itana F; Olsson M Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509 [TBL] [Abstract][Full Text] [Related]
18. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
19. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminted soil. Ng CC; Boyce AN; Abas MR; Mahmood NZ; Han F Environ Monit Assess; 2019 Jun; 191(7):434. PubMed ID: 31201562 [TBL] [Abstract][Full Text] [Related]
20. Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan-implications for the assessment of environmental quality. Woszczyk M; Spychalski W; Boluspaeva L Environ Monit Assess; 2018 May; 190(6):362. PubMed ID: 29802453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]