These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29525707)
21. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay Watershed. Brakebill JW; Preston SD Environ Monit Assess; 2003; 81(1-3):73-84. PubMed ID: 12620006 [TBL] [Abstract][Full Text] [Related]
22. Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. Williamson TN; Barton CD Sci Total Environ; 2020 Nov; 743():140605. PubMed ID: 32758820 [TBL] [Abstract][Full Text] [Related]
23. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model. Trinh T; Ishida K; Kavvas ML; Ercan A; Carr K Sci Total Environ; 2017 May; 586():197-205. PubMed ID: 28162759 [TBL] [Abstract][Full Text] [Related]
24. Using pilot test data to refine an alternative cover design in northern California. Smesrud JK; Benson CH; Albright WH; Richards JH; Wright S; Israel T; Goodrich K Int J Phytoremediation; 2012; 14 Suppl 1():76-93. PubMed ID: 22574382 [TBL] [Abstract][Full Text] [Related]
25. A conceptual framework of agricultural land use planning with BMP for integrated watershed management. Qi H; Altinakar MS J Environ Manage; 2011 Jan; 92(1):149-55. PubMed ID: 20863609 [TBL] [Abstract][Full Text] [Related]
26. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Anand J; Gosain AK; Khosa R Sci Total Environ; 2018 Dec; 644():503-519. PubMed ID: 29990901 [TBL] [Abstract][Full Text] [Related]
27. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. Groenendyk DG; Ferré TP; Thorp KR; Rice AK PLoS One; 2015; 10(6):e0131299. PubMed ID: 26121466 [TBL] [Abstract][Full Text] [Related]
29. Returns on investment in watershed conservation: Application of a best practices analytical framework to the Rio Camboriú Water Producer program, Santa Catarina, Brazil. Kroeger T; Klemz C; Boucher T; Fisher JRB; Acosta E; Cavassani AT; Dennedy-Frank PJ; Garbossa L; Blainski E; Santos RC; Giberti S; Petry P; Shemie D; Dacol K Sci Total Environ; 2019 Mar; 657():1368-1381. PubMed ID: 30677903 [TBL] [Abstract][Full Text] [Related]
30. How Misapplication of the Hydrologic Unit Framework Diminishes the Meaning of Watersheds. Omernik JM; Griffith GE; Hughes RM; Glover JB; Weber MH Environ Manage; 2017 Jul; 60(1):1-11. PubMed ID: 28378091 [TBL] [Abstract][Full Text] [Related]
31. Statistical evaluation of bioretention system for hydrologic performance. Li ZY; Lam KM Water Sci Technol; 2015; 71(11):1742-9. PubMed ID: 26038941 [TBL] [Abstract][Full Text] [Related]
32. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Geza M; McCray JE J Environ Manage; 2008 Aug; 88(3):393-406. PubMed ID: 17475392 [TBL] [Abstract][Full Text] [Related]
33. Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN. Op de Hipt F; Diekkrüger B; Steup G; Yira Y; Hoffmann T; Rode M; Näschen K Sci Total Environ; 2019 Feb; 653():431-445. PubMed ID: 30412888 [TBL] [Abstract][Full Text] [Related]
34. Modeling Urban Hydrology and Green Infrastructure Using the AGWA Urban Tool and the KINEROS2 Model. Korgaonkar Y; Guertin DP; Goodrich DC; Unkrich C; Kepner WG; Burns IS Front Built Environ; 2018; 4(58):1-15. PubMed ID: 31531308 [TBL] [Abstract][Full Text] [Related]
35. Influence of land development on stormwater runoff from a mixed land use and land cover catchment. Paule-Mercado MA; Lee BY; Memon SA; Umer SR; Salim I; Lee CH Sci Total Environ; 2017 Dec; 599-600():2142-2155. PubMed ID: 28575929 [TBL] [Abstract][Full Text] [Related]
36. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Larose M; Heathman GC; Norton LD; Engel B J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256 [TBL] [Abstract][Full Text] [Related]
37. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. Vero SE; Ibrahim TG; Creamer RE; Grant J; Healy MG; Henry T; Kramers G; Richards KG; Fenton O J Contam Hydrol; 2014 Dec; 170():53-67. PubMed ID: 25444116 [TBL] [Abstract][Full Text] [Related]
38. A global dynamic runoff application and dataset based on the assimilation of GPM, SMAP, and GCN250 curve number datasets. Sujud LH; Jaafar HH Sci Data; 2022 Nov; 9(1):706. PubMed ID: 36385044 [TBL] [Abstract][Full Text] [Related]
39. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Xiong X; Grunwald S; Myers DB; Ross CW; Harris WG; Comerford NB Sci Total Environ; 2014 Sep; 493():974-82. PubMed ID: 25010945 [TBL] [Abstract][Full Text] [Related]
40. Estimation of hydraulic conductivity of saturated frozen soil from the soil freezing characteristic curve. Ming F; Chen L; Li D; Wei X Sci Total Environ; 2020 Jan; 698():134132. PubMed ID: 31494428 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]