These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29525949)

  • 1. Adapting the Lateral Root-Inducible System to Medicago truncatula.
    Herrbach V; Maillet F; Bensmihen S
    Methods Mol Biol; 2018; 1761():77-83. PubMed ID: 29525949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral root formation and patterning in Medicago truncatula.
    Herrbach V; Remblière C; Gough C; Bensmihen S
    J Plant Physiol; 2014 Feb; 171(3-4):301-10. PubMed ID: 24148318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula.
    Herrbach V; Chirinos X; Rengel D; Agbevenou K; Vincent R; Pateyron S; Huguet S; Balzergue S; Pasha A; Provart N; Gough C; Bensmihen S
    J Exp Bot; 2017 Jan; 68(3):569-583. PubMed ID: 28073951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula.
    Imin N; Mohd-Radzman NA; Ogilvie HA; Djordjevic MA
    J Exp Bot; 2013 Dec; 64(17):5395-409. PubMed ID: 24259455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics.
    Proust H; Hartmann C; Crespi M; Lelandais-Brière C
    Methods Mol Biol; 2018; 1822():205-239. PubMed ID: 30043307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.
    Goh CH; Nicotra AB; Mathesius U
    Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral Root Inducible System in Arabidopsis and Maize.
    Crombez H; Roberts I; Vangheluwe N; Motte H; Jansen L; Beeckman T; Parizot B
    J Vis Exp; 2016 Jan; (107):e53481. PubMed ID: 26862837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula.
    Gonzalez AA; Agbévénou K; Herrbach V; Gough C; Bensmihen S
    Plant Signal Behav; 2015; 10(1):e977741. PubMed ID: 25517945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux.
    Deinum EE; Kohlen W; Geurts R
    BMC Plant Biol; 2016 Nov; 16(1):254. PubMed ID: 27846795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress.
    Ariel FD; Diet A; Crespi M; Chan RL
    Plant Signal Behav; 2010 Dec; 5(12):1666-8. PubMed ID: 21150260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The LATD gene of Medicago truncatula is required for both nodule and root development.
    Bright LJ; Liang Y; Mitchell DM; Harris JM
    Mol Plant Microbe Interact; 2005 Jun; 18(6):521-32. PubMed ID: 15986921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia.
    Wasson AP; Pellerone FI; Mathesius U
    Plant Cell; 2006 Jul; 18(7):1617-29. PubMed ID: 16751348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.
    Bazin J; Khan GA; Combier JP; Bustos-Sanmamed P; Debernardi JM; Rodriguez R; Sorin C; Palatnik J; Hartmann C; Crespi M; Lelandais-Brière C
    Plant J; 2013 Jun; 74(6):920-34. PubMed ID: 23566016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.
    de Zélicourt A; Diet A; Marion J; Laffont C; Ariel F; Moison M; Zahaf O; Crespi M; Gruber V; Frugier F
    Plant J; 2012 Apr; 70(2):220-30. PubMed ID: 22098255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal Control of Lateral Root and Nodule Development in Legumes.
    Bensmihen S
    Plants (Basel); 2015 Aug; 4(3):523-47. PubMed ID: 27135340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors.
    Nars A; Rey T; Lafitte C; Vergnes S; Amatya S; Jacquet C; Dumas B; Thibaudeau C; Heux L; Bottin A; Fliegmann J
    Plant Cell Rep; 2013 Apr; 32(4):489-502. PubMed ID: 23314495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula.
    Franssen HJ; Kulikova O; Willemsen V; Heidstra R
    Plant Signal Behav; 2017 Feb; 12(2):e1278102. PubMed ID: 28067580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root developmental programs shape the Medicago truncatula nodule meristem.
    Franssen HJ; Xiao TT; Kulikova O; Wan X; Bisseling T; Scheres B; Heidstra R
    Development; 2015 Sep; 142(17):2941-50. PubMed ID: 26253408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria.
    Suzaki T; Yoro E; Kawaguchi M
    Int Rev Cell Mol Biol; 2015; 316():111-58. PubMed ID: 25805123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.