These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 29525996)
1. In Vitro Models to Analyze the Migration of MGE-Derived Interneurons. Leclech C; Métin C Methods Mol Biol; 2018; 1749():145-161. PubMed ID: 29525996 [TBL] [Abstract][Full Text] [Related]
2. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134 [TBL] [Abstract][Full Text] [Related]
3. Neuregulin repellent signaling via ErbB4 restricts GABAergic interneurons to migratory paths from ganglionic eminence to cortical destinations. Li H; Chou SJ; Hamasaki T; Perez-Garcia CG; O'Leary DD Neural Dev; 2012 Feb; 7():10. PubMed ID: 22376909 [TBL] [Abstract][Full Text] [Related]
4. Dopamine stimulates differentiation and migration of cortical interneurons. Ohira K Biochem Biophys Res Commun; 2019 May; 512(3):577-583. PubMed ID: 30910356 [TBL] [Abstract][Full Text] [Related]
5. N-cadherin sustains motility and polarity of future cortical interneurons during tangential migration. Luccardini C; Hennekinne L; Viou L; Yanagida M; Murakami F; Kessaris N; Ma X; Adelstein RS; Mège RM; Métin C J Neurosci; 2013 Nov; 33(46):18149-60. PubMed ID: 24227724 [TBL] [Abstract][Full Text] [Related]
6. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Steinecke A; Gampe C; Zimmer G; Rudolph J; Bolz J Development; 2014 Jan; 141(2):460-71. PubMed ID: 24381199 [TBL] [Abstract][Full Text] [Related]
7. Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons. Cuevas E; Ausó E; Telefont M; Morreale de Escobar G; Sotelo C; Berbel P Eur J Neurosci; 2005 Aug; 22(3):541-51. PubMed ID: 16101736 [TBL] [Abstract][Full Text] [Related]
8. Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. Zimmer G; Rudolph J; Landmann J; Gerstmann K; Steinecke A; Gampe C; Bolz J J Neurosci; 2011 Dec; 31(50):18364-80. PubMed ID: 22171039 [TBL] [Abstract][Full Text] [Related]
9. RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration. Katayama K; Imai F; Campbell K; Lang RA; Zheng Y; Yoshida Y Development; 2013 Aug; 140(15):3139-45. PubMed ID: 23861058 [TBL] [Abstract][Full Text] [Related]
10. Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Polleux F; Whitford KL; Dijkhuizen PA; Vitalis T; Ghosh A Development; 2002 Jul; 129(13):3147-60. PubMed ID: 12070090 [TBL] [Abstract][Full Text] [Related]
11. Cortical interneurons migrating on a pure substrate of N-cadherin exhibit fast synchronous centrosomal and nuclear movements and reduced ciliogenesis. Luccardini C; Leclech C; Viou L; Rio JP; Métin C Front Cell Neurosci; 2015; 9():286. PubMed ID: 26283922 [TBL] [Abstract][Full Text] [Related]
12. Vascular-derived SPARC and SerpinE1 regulate interneuron tangential migration and accelerate functional maturation of human stem cell-derived interneurons. Genestine M; Ambriz D; Crabtree GW; Dummer P; Molotkova A; Quintero M; Mela A; Biswas S; Feng H; Zhang C; Canoll P; Hargus G; Agalliu D; Gogos JA; Au E Elife; 2021 Apr; 10():. PubMed ID: 33904394 [TBL] [Abstract][Full Text] [Related]
13. RGMa regulates cortical interneuron migration and differentiation. O'Leary C; Cole SJ; Langford M; Hewage J; White A; Cooper HM PLoS One; 2013; 8(11):e81711. PubMed ID: 24312340 [TBL] [Abstract][Full Text] [Related]
15. Random walk behavior of migrating cortical interneurons in the marginal zone: time-lapse analysis in flat-mount cortex. Tanaka DH; Yanagida M; Zhu Y; Mikami S; Nagasawa T; Miyazaki J; Yanagawa Y; Obata K; Murakami F J Neurosci; 2009 Feb; 29(5):1300-11. PubMed ID: 19193877 [TBL] [Abstract][Full Text] [Related]
16. FLRT2 and FLRT3 Cooperate in Maintaining the Tangential Migratory Streams of Cortical Interneurons during Development. Fleitas C; Marfull-Oromí P; Chauhan D; Del Toro D; Peguera B; Zammou B; Rocandio D; Klein R; Espinet C; Egea J J Neurosci; 2021 Sep; 41(35):7350-7362. PubMed ID: 34301831 [TBL] [Abstract][Full Text] [Related]
17. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Tyson JA; Goldberg EM; Maroof AM; Xu Q; Petros TJ; Anderson SA Development; 2015 Apr; 142(7):1267-78. PubMed ID: 25804737 [TBL] [Abstract][Full Text] [Related]
18. Time lapse recording of cortical interneuron migration in mouse organotypic brain slices and explants. Lepiemme F; Silva CG; Nguyen L STAR Protoc; 2021 Jun; 2(2):100467. PubMed ID: 33982012 [TBL] [Abstract][Full Text] [Related]
19. Transcription Factors Tao G; Li Z; Wen Y; Song X; Wei S; Du H; Yang Z; Xu Z; You Y Front Mol Neurosci; 2019; 12():75. PubMed ID: 31001083 [TBL] [Abstract][Full Text] [Related]
20. Distinct cortical migrations from the medial and lateral ganglionic eminences. Anderson SA; Marín O; Horn C; Jennings K; Rubenstein JL Development; 2001 Feb; 128(3):353-63. PubMed ID: 11152634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]