These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29526504)
1. Efficient hydroxylation of cycloalkanes by co-addition of decoy molecules to variants of the cytochrome P450 CYP102A1. Dezvarei S; Onoda H; Shoji O; Watanabe Y; Bell SG J Inorg Biochem; 2018 Jun; 183():137-145. PubMed ID: 29526504 [TBL] [Abstract][Full Text] [Related]
2. Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1. Dezvarei S; Lee JHZ; Bell SG Enzyme Microb Technol; 2018 Apr; 111():29-37. PubMed ID: 29421034 [TBL] [Abstract][Full Text] [Related]
3. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition. Shoji O; Aiba Y; Watanabe Y Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147 [TBL] [Abstract][Full Text] [Related]
4. Selective hydroxylation of 1,8- and 1,4-cineole using bacterial P450 variants. Lee JHZ; Wong SH; Stok JE; Bagster SA; Beckett J; Clegg JK; Brock AJ; De Voss JJ; Bell SG Arch Biochem Biophys; 2019 Mar; 663():54-63. PubMed ID: 30590022 [TBL] [Abstract][Full Text] [Related]
5. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018 [TBL] [Abstract][Full Text] [Related]
6. Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium. Budde M; Morr M; Schmid RD; Urlacher VB Chembiochem; 2006 May; 7(5):789-94. PubMed ID: 16566047 [TBL] [Abstract][Full Text] [Related]
7. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
8. Combining substrate dynamics, binding statistics, and energy barriers to rationalize regioselective hydroxylation of octane and lauric acid by CYP102A1 and mutants. Feenstra KA; Starikov EB; Urlacher VB; Commandeur JN; Vermeulen NP Protein Sci; 2007 Mar; 16(3):420-31. PubMed ID: 17322527 [TBL] [Abstract][Full Text] [Related]
9. Roles of key active-site residues in flavocytochrome P450 BM3. Noble MA; Miles CS; Chapman SK; Lysek DA; MacKay AC; Reid GA; Hanzlik RP; Munro AW Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269 [TBL] [Abstract][Full Text] [Related]
10. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]
11. Regioselective hydroxylation of omeprazole enantiomers by bacterial CYP102A1 mutants. Ryu SH; Park BY; Kim SY; Park SH; Jung HJ; Park M; Park KD; Ahn T; Kang HS; Yun CH Drug Metab Dispos; 2014 Sep; 42(9):1493-7. PubMed ID: 25008345 [TBL] [Abstract][Full Text] [Related]
12. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives. Shoji O; Yanagisawa S; Stanfield JK; Suzuki K; Cong Z; Sugimoto H; Shiro Y; Watanabe Y Angew Chem Int Ed Engl; 2017 Aug; 56(35):10324-10329. PubMed ID: 28544674 [TBL] [Abstract][Full Text] [Related]
13. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Murataliev MB; Feyereisen R Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669 [TBL] [Abstract][Full Text] [Related]
14. Computational redesign of cytochrome P450 CYP102A1 for highly stereoselective omeprazole hydroxylation by UniDesign. Huang X; Sun Y; Osawa Y; Chen YE; Zhang H J Biol Chem; 2023 Aug; 299(8):105050. PubMed ID: 37451479 [TBL] [Abstract][Full Text] [Related]
15. The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst. Chao RR; Lau IC; Coleman T; Churchman LR; Child SA; Lee JHZ; Bruning JB; De Voss JJ; Bell SG Chemistry; 2021 Oct; 27(59):14765-14777. PubMed ID: 34350662 [TBL] [Abstract][Full Text] [Related]
16. Molecular Determinants of Substrate Affinity and Enzyme Activity of a Cytochrome P450 Geronimo I; Denning CA; Heidary DK; Glazer EC; Payne CM Biophys J; 2018 Oct; 115(7):1251-1263. PubMed ID: 30224054 [TBL] [Abstract][Full Text] [Related]
19. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation. Park SH; Kim DH; Kim D; Kim DH; Jung HC; Pan JG; Ahn T; Kim D; Yun CH Drug Metab Dispos; 2010 May; 38(5):732-9. PubMed ID: 20100815 [TBL] [Abstract][Full Text] [Related]
20. Tuning the regio- and stereoselectivity of C-H activation in n-octanes by cytochrome P450 BM-3 with fluorine substituents: evidence for interactions between a C-F bond and aromatic π systems. Wu LL; Yang CL; Lo FC; Chiang CH; Chang CW; Ng KY; Chou HH; Hung HY; Chan SI; Yu SS Chemistry; 2011 Apr; 17(17):4774-87. PubMed ID: 21400620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]