These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29526646)

  • 61. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation.
    Yu K; Karuppaiah K; Ornitz DM
    Dev Dyn; 2015 Nov; 244(11):1427-38. PubMed ID: 26250517
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Epithelial-specific requirement of FGFR2 signaling during tooth and palate development.
    Hosokawa R; Deng X; Takamori K; Xu X; Urata M; Bringas P; Chai Y
    J Exp Zool B Mol Dev Evol; 2009 Jun; 312B(4):343-50. PubMed ID: 19235875
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of a gain-of-function FGFR2 Crouzon mutation provides evidence of loss of function activity in the etiology of cleft palate.
    Snyder-Warwick AK; Perlyn CA; Pan J; Yu K; Zhang L; Ornitz DM
    Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2515-20. PubMed ID: 20133659
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA; Evans RD; Hayward RD; Jones BM
    Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A unique mouse strain expressing Cre recombinase for tissue-specific analysis of gene function in palate and kidney development.
    Lan Y; Wang Q; Ovitt CE; Jiang R
    Genesis; 2007 Oct; 45(10):618-24. PubMed ID: 17941042
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Extracellular Matrix Remodeling During Palate Development.
    Wang X; Li C; Zhu Z; Yuan L; Chan WY; Sha O
    Organogenesis; 2020 Apr; 16(2):43-60. PubMed ID: 32233728
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cleft Palate in Apert Syndrome.
    Willie D; Holmes G; Jabs EW; Wu M
    J Dev Biol; 2022 Aug; 10(3):. PubMed ID: 35997397
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Signaling networks in palate development.
    Lane J; Kaartinen V
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(3):271-8. PubMed ID: 24644145
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Superficial acral calcified chondroid mesenchymal neoplasm harboring an FN1::FGFR2 fusion and review of the literature.
    Machado I; Damaskou V; Ioannidis E; Jour G; Linos K
    J Cutan Pathol; 2024 May; 51(5):338-344. PubMed ID: 38328983
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inactivation of Fgfr2 gene in mouse secondary palate mesenchymal cells leads to cleft palate.
    Jin JZ; Lei Z; Lan ZJ; Mukhopadhyay P; Ding J
    Reprod Toxicol; 2018 Apr; 77():137-142. PubMed ID: 29526646
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A review of FGF signaling in palate development.
    Weng M; Chen Z; Xiao Q; Li R; Chen Z
    Biomed Pharmacother; 2018 Jul; 103():240-247. PubMed ID: 29655165
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of the lip and palate: FGF signalling.
    Stanier P; Pauws E
    Front Oral Biol; 2012; 16():71-80. PubMed ID: 22759671
    [TBL] [Abstract][Full Text] [Related]  

  • 73.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 74.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 75.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 76.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 77.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.