These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29527064)

  • 1. Population structure of the ash dieback pathogen,
    Orton ES; Brasier CM; Bilham LJ; Bansal A; Webber JF; Brown JKM
    Plant Pathol; 2018 Feb; 67(2):255-264. PubMed ID: 29527064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of a Conspecific Mycovirus in Two Closely Related Native and Introduced Fungal Hosts and Evidence for Interspecific Virus Transmission.
    Schoebel CN; Prospero S; Gross A; Rigling D
    Viruses; 2018 Nov; 10(11):. PubMed ID: 30428556
    [No Abstract]   [Full Text] [Related]  

  • 3. Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host.
    Schoebel CN; Botella L; Lygis V; Rigling D
    Mol Ecol; 2017 May; 26(9):2482-2497. PubMed ID: 28160501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virulence of Hymenoscyphus albidus and H. fraxineus on Fraxinus excelsior and F. pennsylvanica.
    Kowalski T; Bilański P; Holdenrieder O
    PLoS One; 2015; 10(10):e0141592. PubMed ID: 26517266
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Baral HO; Bemmann M
    Mycology; 2014 Oct; 5(4):228-290. PubMed ID: 25544935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong antagonism of an endophyte of
    Demir Ö; Schulz B; Rabsch L; Steinert M; Surup F
    Appl Environ Microbiol; 2024 Jun; 90(6):e0066524. PubMed ID: 38814060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea.
    Han JG; Shrestha B; Hosoya T; Lee KH; Sung GH; Shin HD
    Mycobiology; 2014 Dec; 42(4):391-6. PubMed ID: 25606012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endophytic fungi related to the ash dieback causal agent encode signatures of pathogenicity on European ash.
    Rafiqi M; Kosawang C; Peers JA; Jelonek L; Yvanne H; McMullan M; Nielsen LR
    IMA Fungus; 2023 May; 14(1):10. PubMed ID: 37170345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable overexpression and targeted gene deletion of the causative agent of ash dieback Hymenoscyphus fraxineus.
    Lutz T; Hadeler B; Jaeckel M; Schulz B; Heinze C
    Fungal Biol Biotechnol; 2023 Jan; 10(1):1. PubMed ID: 36639657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal succession in decomposing ash leaves colonized by the ash dieback pathogen
    Kosawang C; Børja I; Herrero ML; Nagy NE; Nielsen LR; Solheim H; Timmermann V; Hietala AM
    Front Microbiol; 2023; 14():1154344. PubMed ID: 37125194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles.
    Stocks JJ; Buggs RJA; Lee SJ
    Sci Rep; 2017 Nov; 7(1):16546. PubMed ID: 29185457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus.
    Fones HN; Mardon C; Gurr SJ
    Sci Rep; 2016 Oct; 6():34638. PubMed ID: 27694963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic prediction of resistance to
    Meger J; Ulaszewski B; Pałucka M; Kozioł C; Burczyk J
    Evol Appl; 2024 May; 17(5):e13694. PubMed ID: 38707993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbance by invasive pathogenic fungus alters arthropod predator-prey food-webs in ash plantations.
    Michalko R; Košulič O; Martinek P; Birkhofer K
    J Anim Ecol; 2021 Sep; 90(9):2213-2226. PubMed ID: 34013522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal endophytes in Fraxinus excelsior petioles and their in vitro antagonistic potential against the ash dieback pathogen Hymenoscyphus fraxineus.
    Bilański P; Kowalski T
    Microbiol Res; 2022 Apr; 257():126961. PubMed ID: 35042053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible Biological Control of Ash Dieback Using the Mycoparasite Hymenoscyphus Fraxineus Mitovirus 2.
    Shamsi W; Mittelstrass J; Ulrich S; Kondo H; Rigling D; Prospero S
    Phytopathology; 2024 May; 114(5):1020-1027. PubMed ID: 38114080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ash dieback invasion of Europe was founded by two genetically divergent individuals.
    McMullan M; Rafiqi M; Kaithakottil G; Clavijo BJ; Bilham L; Orton E; Percival-Alwyn L; Ward BJ; Edwards A; Saunders DGO; Garcia Accinelli G; Wright J; Verweij W; Koutsovoulos G; Yoshida K; Hosoya T; Williamson L; Jennings P; Ioos R; Husson C; Hietala AM; Vivian-Smith A; Solheim H; MaClean D; Fosker C; Hall N; Brown JKM; Swarbreck D; Blaxter M; Downie JA; Clark MD
    Nat Ecol Evol; 2018 Jun; 2(6):1000-1008. PubMed ID: 29686237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-Pathogen Interactions in Leaf Petioles of Common Ash and Manchurian Ash Infected with
    Nielsen LR; Nagy NE; Piqueras S; Kosawang C; Thygesen LG; Hietala AM
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canditate metabolites for ash dieback tolerance in Fraxinus excelsior.
    Nemesio-Gorriz M; Menezes RC; Paetz C; Hammerbacher A; Steenackers M; Schamp K; Höfte M; Svatoš A; Gershenzon J; Douglas GC
    J Exp Bot; 2020 Oct; 71(19):6074-6083. PubMed ID: 32598444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Native
    Hietala AM; Agan A; Nagy NE; Børja I; Timmermann V; Drenkhan R; Solheim H
    Front Microbiol; 2022; 13():892051. PubMed ID: 35711744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.