These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29527103)

  • 1. Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions.
    Huang LG; Yin L; Wang YL; Lin XL
    J Inequal Appl; 2018; 2018(1):52. PubMed ID: 29527103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities.
    Malešević B; Lutovac T; Rašajski M; Mortici C
    Adv Differ Equ; 2018; 2018(1):90. PubMed ID: 29576765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-point-Padé-approximant-based method for bounding some trigonometric functions.
    Chen XD; Ma J; Jin J; Wang Y
    J Inequal Appl; 2018; 2018(1):140. PubMed ID: 30137727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted inequalities for generalized polynomials with doubling weights.
    Joung H
    J Inequal Appl; 2017; 2017(1):91. PubMed ID: 28515619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On frame's inequalities.
    Zhu L
    J Inequal Appl; 2018; 2018(1):94. PubMed ID: 29706747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refining trigonometric inequalities by using Padé approximant.
    Zhang Z; Shan H; Chen L
    J Inequal Appl; 2018; 2018(1):149. PubMed ID: 30008537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some means inequalities for positive operators in Hilbert spaces.
    Liang J; Shi G
    J Inequal Appl; 2017; 2017(1):14. PubMed ID: 28111512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensions of interpolation between the arithmetic-geometric mean inequality for matrices.
    Bakherad M; Lashkaripour R; Hajmohamadi M
    J Inequal Appl; 2017; 2017(1):209. PubMed ID: 28943739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some complementary inequalities to Jensen's operator inequality.
    Mićić J; Moradi HR; Furuichi S
    J Inequal Appl; 2018; 2018(1):25. PubMed ID: 29398879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The natural algorithmic approach of mixed trigonometric-polynomial problems.
    Lutovac T; Malešević B; Mortici C
    J Inequal Appl; 2017; 2017(1):116. PubMed ID: 28596694
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Butt SI; Kashuri A; Tariq M; Nasir J; Aslam A; Gao W
    Heliyon; 2020 Nov; 6(11):e05420. PubMed ID: 33210005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Padé approximants for inverse trigonometric functions and their applications.
    Wu S; Bercu G
    J Inequal Appl; 2017; 2017(1):31. PubMed ID: 28216986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized geometrically convex functions and inequalities.
    Noor MA; Noor KI; Safdar F
    J Inequal Appl; 2017; 2017(1):202. PubMed ID: 28932100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ostrowski type inequalities involving conformable fractional integrals.
    Adil Khan M; Begum S; Khurshid Y; Chu YM
    J Inequal Appl; 2018; 2018(1):70. PubMed ID: 29628746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probability Weighting Functions Derived from Hyperbolic Time Discounting: Psychophysical Models and Their Individual Level Testing.
    Takemura K; Murakami H
    Front Psychol; 2016; 7():778. PubMed ID: 27303338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bellman-Steffensen type inequalities.
    Jakšetić J; Pečarić J; Smoljak Kalamir K
    J Inequal Appl; 2018; 2018(1):288. PubMed ID: 30839733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bonnesen-style inequalities on surfaces of constant curvature.
    Chang M
    J Inequal Appl; 2018; 2018(1):325. PubMed ID: 30839885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives.
    Abdeljawad T; Agarwal RP; Alzabut J; Jarad F; Özbekler A
    J Inequal Appl; 2018; 2018(1):143. PubMed ID: 30137730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities.
    Shi HN; Wu SH
    J Inequal Appl; 2018; 2018(1):8. PubMed ID: 29367820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refined Young Inequality and Its Application to Divergences.
    Furuichi S; Minculete N
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.