These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29527405)

  • 21. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1997 Sep; 36(36):11044-9. PubMed ID: 9283097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2004 Jun; 43(21):6427-37. PubMed ID: 15157077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two pathways for glutamate biosynthesis in the syntrophic bacterium Syntrophus aciditrophicus.
    Kim M; Le HM; Xie X; Feng X; Tang YJ; Mouttaki H; McInerney MJ; Buckel W
    Appl Environ Microbiol; 2015 Dec; 81(24):8434-44. PubMed ID: 26431966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase.
    Hofstein HA; Feng Y; Anderson VE; Tonge PJ
    Biochemistry; 1999 Jul; 38(29):9508-16. PubMed ID: 10413528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of human S-adenosylmethionine decarboxylase proenzyme processing as revealed by the structure of the S68A mutant.
    Tolbert WD; Zhang Y; Cottet SE; Bennett EM; Ekstrom JL; Pegg AE; Ealick SE
    Biochemistry; 2003 Mar; 42(8):2386-95. PubMed ID: 12600205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactions of Cg10062, a cis-3-Chloroacrylic Acid Dehalogenase Homologue, with Acetylene and Allene Substrates: Evidence for a Hydration-Dependent Decarboxylation.
    Huddleston JP; Johnson WH; Schroeder GK; Whitman CP
    Biochemistry; 2015 May; 54(19):3009-23. PubMed ID: 25894805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Pd-Catalyzed Regio- and Stereoselective Carboxylation of Allylic Alcohols with Formic Acid.
    Fu MC; Shang R; Cheng WM; Fu Y
    Chemistry; 2017 Jul; 23(37):8818-8822. PubMed ID: 28543768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intramolecular Aza-Diels-Alder Reactions of ortho-Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines.
    Kretzschmar M; Hofmann F; Moock D; Schneider C
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4774-4778. PubMed ID: 29488296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational analysis of phenolic acid decarboxylase from Enterobacter sp. Px6-4. towards enhancement of binding affinity: A computational approach.
    Kumar P; Kumari P; Sachan SG; Poddar R
    Comput Biol Chem; 2018 Oct; 76():245-255. PubMed ID: 30081341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peroxisomes and beta-oxidation of long-chain unsaturated carboxylic acids.
    Hiltunen JK
    Scand J Clin Lab Invest Suppl; 1991; 204():33-46. PubMed ID: 2042025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: enhancing the promiscuous D-arabino-hex-3-ulose 6-phosphate synthase reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Akana J; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2005 Feb; 44(6):1807-15. PubMed ID: 15697206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule.
    Engel CK; Kiema TR; Hiltunen JK; Wierenga RK
    J Mol Biol; 1998 Feb; 275(5):847-59. PubMed ID: 9480773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substituent effects on carbocation stability: the pK(R) for p-quinone methide.
    Toteva MM; Moran M; Amyes TL; Richard JP
    J Am Chem Soc; 2003 Jul; 125(29):8814-9. PubMed ID: 12862476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.
    Kim KR; Oh HJ; Park CS; Hong SH; Park JY; Oh DK
    Biotechnol Bioeng; 2015 Nov; 112(11):2206-13. PubMed ID: 25952266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The modification of acetate and propionate side chains during the biosynthesis of haem and chlorophylls: mechanistic and stereochemical studies.
    Akhtar M
    Ciba Found Symp; 1994; 180():131-51; discussion 152-5. PubMed ID: 7842850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion.
    Bahnson BJ; Anderson VE; Petsko GA
    Biochemistry; 2002 Feb; 41(8):2621-9. PubMed ID: 11851409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.
    Derrick S; Large PJ
    J Gen Microbiol; 1993 Nov; 139(11):2783-92. PubMed ID: 8277258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.