BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29527415)

  • 41. DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi.
    Casselli T; Tourand Y; Scheidegger A; Arnold WK; Proulx A; Stevenson B; Brissette CA
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30249703
    [TBL] [Abstract][Full Text] [Related]  

  • 42. M.BssHII, a multispecific cytosine-C5-DNA-methyltransferase with unusual target recognizing properties.
    Schumann J; Walter J; Willert J; Wild C; Koch D; Trautner TA
    J Mol Biol; 1996 Apr; 257(5):949-59. PubMed ID: 8632477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systematic analysis of DEMETER-like DNA glycosylase genes shows lineage-specific Smi-miR7972 involved in SmDML1 regulation in Salvia miltiorrhiza.
    Li J; Li C; Lu S
    Sci Rep; 2018 May; 8(1):7143. PubMed ID: 29739980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. M.(phi)BssHII, a novel cytosine-C5-DNA-methyltransferase with target-recognizing domains at separated locations of the enzyme.
    Sethmann S; Ceglowski P; Willert J; Iwanicka-Nowicka R; Trautner TA; Walter J
    EMBO J; 1999 Jun; 18(12):3502-8. PubMed ID: 10369689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus.
    Pues H; Bleimling N; Holz B; Wölcke J; Weinhold E
    Biochemistry; 1999 Feb; 38(5):1426-34. PubMed ID: 9931007
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza.
    Xu Z; Ji A; Song J; Chen S
    Biol Open; 2016 Jun; 5(6):848-57. PubMed ID: 27230647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-wide identification and comparative analysis of DNA methyltransferase and demethylase gene families in two ploidy Cyclocarya paliurus and their potential function in heterodichogamy.
    Wang Q; Qu Y; Yu Y; Mao X; Fu X
    BMC Genomics; 2023 May; 24(1):287. PubMed ID: 37248459
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-Wide Identification of DNA Methylases and Demethylases in Kiwifruit (
    Zhang Y; He X; Zhao H; Xu W; Deng H; Wang H; Wang S; Su D; Zheng Z; Yang B; Grierson D; Wu J; Liu M
    Front Plant Sci; 2020; 11():514993. PubMed ID: 33013956
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases.
    Trautner TA; Pawlek B; Behrens B; Willert J
    EMBO J; 1996 Mar; 15(6):1434-42. PubMed ID: 8635476
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Dnmt2 is the Most Evolutionary Conserved and Enigmatic Cytosine DNA Methyltransferase in Eukaryotes].
    Ashapkin VV; Kutueva LI; Vanyushin BF
    Genetika; 2016 Mar; 52(3):269-82. PubMed ID: 27281847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of streptococcus pneumoniae bound to S-adenosylmethionine.
    Tran PH; Korszun ZR; Cerritelli S; Springhorn SS; Lacks SA
    Structure; 1998 Dec; 6(12):1563-75. PubMed ID: 9862809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.
    Bitinaite J; Mitkaite G; Dauksaite V; Jakubauskas A; Timinskas A; Vaisvila R; Lubys A; Janulaitis A
    Mol Genet Genomics; 2002 Jul; 267(5):664-72. PubMed ID: 12172806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AdoMet-dependent methylation, DNA methyltransferases and base flipping.
    Cheng X; Roberts RJ
    Nucleic Acids Res; 2001 Sep; 29(18):3784-95. PubMed ID: 11557810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases.
    Joshi CP; Chiang VL
    Plant Mol Biol; 1998 Jul; 37(4):663-74. PubMed ID: 9687070
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza.
    Li C; Li D; Shao F; Lu S
    BMC Genomics; 2015 Mar; 16(1):200. PubMed ID: 25881056
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity of DNA methyltransferases that recognize asymmetric target sequences.
    Madhusoodanan UK; Rao DN
    Crit Rev Biochem Mol Biol; 2010 Apr; 45(2):125-45. PubMed ID: 20184512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges.
    Jurkowska RZ; Jeltsch A
    Adv Exp Med Biol; 2022; 1389():1-19. PubMed ID: 36350504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-Wide Identification and Characterization of
    Li Q; Feng J; Chen L; Xu Z; Zhu Y; Wang Y; Xiao Y; Chen J; Zhou Y; Tan H; Zhang L; Chen W
    Front Plant Sci; 2019; 10():435. PubMed ID: 31024599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High plasticity of multispecific DNA methyltransferases in the region carrying DNA target recognizing enzyme modules.
    Walter J; Trautner TA; Noyer-Weidner M
    EMBO J; 1992 Dec; 11(12):4445-50. PubMed ID: 1425579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza.
    Wang B; Sun W; Li Q; Li Y; Luo H; Song J; Sun C; Qian J; Zhu Y; Hayward A; Xu H; Chen S
    Planta; 2015 Mar; 241(3):711-25. PubMed ID: 25471478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.