These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 29527478)

  • 1. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y
    Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiogenomic analysis of vascular endothelial growth factor in patients with diffuse gliomas.
    Sun Z; Li Y; Wang Y; Fan X; Xu K; Wang K; Li S; Zhang Z; Jiang T; Liu X
    Cancer Imaging; 2019 Oct; 19(1):68. PubMed ID: 31639060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis.
    Li Y; Liu X; Xu K; Qian Z; Wang K; Fan X; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jan; 28(1):356-362. PubMed ID: 28755054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas.
    Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W
    Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis.
    Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K
    Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features.
    Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X
    J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging.
    Li Y; Liang Y; Sun Z; Xu K; Fan X; Li S; Zhang Z; Jiang T; Liu X; Wang Y
    Neuroradiology; 2019 Nov; 61(11):1229-1237. PubMed ID: 31218383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomic features predict Ki-67 expression level and survival in lower grade gliomas.
    Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Liu X; Wang Y; Jiang T
    J Neurooncol; 2017 Nov; 135(2):317-324. PubMed ID: 28900812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative SVM approach potentially improves the accuracy of magnetic resonance spectroscopy in the preoperative evaluation of the grades of diffuse gliomas.
    Qi C; Li Y; Fan X; Jiang Y; Wang R; Yang S; Meng L; Jiang T; Li S
    Neuroimage Clin; 2019; 23():101835. PubMed ID: 31035232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain.
    Su X; Chen N; Sun H; Liu Y; Yang X; Wang W; Zhang S; Tan Q; Su J; Gong Q; Yue Q
    Neuro Oncol; 2020 Mar; 22(3):393-401. PubMed ID: 31563963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas.
    Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.