These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 29527567)

  • 61. Interregional alpha-band synchrony supports temporal cross-modal integration.
    van Driel J; Knapen T; van Es DM; Cohen MX
    Neuroimage; 2014 Nov; 101():404-15. PubMed ID: 25042447
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatiotemporal Relationships among Audiovisual Stimuli Modulate Auditory Facilitation of Visual Target Discrimination.
    Li Q; Yang H; Sun F; Wu J
    Perception; 2015 Mar; 44(3):232-42. PubMed ID: 26562250
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The neural circuitry underlying the executive control of auditory spatial attention.
    Wu CT; Weissman DH; Roberts KC; Woldorff MG
    Brain Res; 2007 Feb; 1134(1):187-98. PubMed ID: 17204249
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Learning multisensory cue integration: A computational model of crossmodal synaptic plasticity enables reliability-based cue weighting by capturing stimulus statistics.
    Shaikh D
    Front Neural Circuits; 2022; 16():921453. PubMed ID: 36004009
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An FMRI study of the neural systems involved in visually cued auditory top-down spatial and temporal attention.
    Li C; Chen K; Han H; Chui D; Wu J
    PLoS One; 2012; 7(11):e49948. PubMed ID: 23166800
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Audiovisual integration increases the intentional step synchronization of side-by-side walkers.
    Noy D; Mouta S; Lamas J; Basso D; Silva C; Santos JA
    Hum Mov Sci; 2017 Dec; 56(Pt B):71-87. PubMed ID: 29107820
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Distinct effects of trial-driven and task Set-related control in primary visual cortex.
    Griffis JC; Elkhetali AS; Vaden RJ; Visscher KM
    Neuroimage; 2015 Oct; 120():285-297. PubMed ID: 26163806
    [TBL] [Abstract][Full Text] [Related]  

  • 69. When audiovisual correspondence disturbs visual processing.
    Hong SW; Shim WM
    Exp Brain Res; 2016 May; 234(5):1325-32. PubMed ID: 26884130
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect.
    Calvert GA; Hansen PC; Iversen SD; Brammer MJ
    Neuroimage; 2001 Aug; 14(2):427-38. PubMed ID: 11467916
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.
    Li Q; Yu H; Wu Y; Gao N
    Neurosci Lett; 2016 Aug; 629():149-154. PubMed ID: 27392755
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dissociated roles of the inferior frontal gyrus and superior temporal sulcus in audiovisual processing: top-down and bottom-up mismatch detection.
    Uno T; Kawai K; Sakai K; Wakebe T; Ibaraki T; Kunii N; Matsuo T; Saito N
    PLoS One; 2015; 10(3):e0122580. PubMed ID: 25822912
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Unimodal and crossmodal gradients of spatial attention: Evidence from event-related potentials.
    Föcker J; Hötting K; Gondan M; Röder B
    Brain Topogr; 2010 Mar; 23(1):1-13. PubMed ID: 19821021
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention.
    Salmi J; Rinne T; Koistinen S; Salonen O; Alho K
    Brain Res; 2009 Aug; 1286():155-64. PubMed ID: 19577551
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.
    Murray MM; Molholm S; Michel CM; Heslenfeld DJ; Ritter W; Javitt DC; Schroeder CE; Foxe JJ
    Cereb Cortex; 2005 Jul; 15(7):963-74. PubMed ID: 15537674
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.
    Aoyama A; Haruyama T; Kuriki S
    J Integr Neurosci; 2013 Sep; 12(3):385-99. PubMed ID: 24070061
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Brain networks underlying mental imagery of auditory and visual information.
    Zvyagintsev M; Clemens B; Chechko N; Mathiak KA; Sack AT; Mathiak K
    Eur J Neurosci; 2013 May; 37(9):1421-34. PubMed ID: 23383863
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration.
    Roach NW; Heron J; McGraw PV
    Proc Biol Sci; 2006 Sep; 273(1598):2159-68. PubMed ID: 16901835
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The neural basis of visual dominance in the context of audio-visual object processing.
    Schmid C; Büchel C; Rose M
    Neuroimage; 2011 Mar; 55(1):304-11. PubMed ID: 21112404
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cortical networks for auditory detection with and without informational masking: Task effects and implications for conscious perception.
    Wiegand K; Heiland S; Uhlig CH; Dykstra AR; Gutschalk A
    Neuroimage; 2018 Feb; 167():178-190. PubMed ID: 29170071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.