These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29527609)
1. Engineering iridium-based metal organic frameworks towards electrocatalytic water oxidation. Zhao Y; Zhang S; Wang M; Han J; Wang H; Li Z; Liu X Dalton Trans; 2018 Mar; 47(13):4646-4652. PubMed ID: 29527609 [TBL] [Abstract][Full Text] [Related]
2. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Wang C; Xie Z; deKrafft KE; Lin W J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787 [TBL] [Abstract][Full Text] [Related]
3. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. Wang C; Wang JL; Lin W J Am Chem Soc; 2012 Dec; 134(48):19895-908. PubMed ID: 23136923 [TBL] [Abstract][Full Text] [Related]
4. Enhanced durability of an iridium-bipyridine complex embedded into organosilica nanotubes for water oxidation. Zhang S; Wang H; Li M; Han J; Inagaki S; Liu X Dalton Trans; 2017 Jul; 46(29):9369-9374. PubMed ID: 28714999 [TBL] [Abstract][Full Text] [Related]
5. Iron-Based Metal-Organic Frameworks as Catalysts for Visible Light-Driven Water Oxidation. Chi L; Xu Q; Liang X; Wang J; Su X Small; 2016 Mar; 12(10):1351-8. PubMed ID: 26756919 [TBL] [Abstract][Full Text] [Related]
9. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. Manna K; Zhang T; Greene FX; Lin W J Am Chem Soc; 2015 Feb; 137(7):2665-73. PubMed ID: 25640998 [TBL] [Abstract][Full Text] [Related]
10. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. Schley ND; Blakemore JD; Subbaiyan NK; Incarvito CD; D'Souza F; Crabtree RH; Brudvig GW J Am Chem Soc; 2011 Jul; 133(27):10473-81. PubMed ID: 21671679 [TBL] [Abstract][Full Text] [Related]
11. Iridium-Complexed Dipyridyl-Pyridazine Organosilica as a Catalyst for Water Oxidation. Rojas-Luna R; Amaro-Gahete J; Jiménez-Sanchidrián C; Ruiz JR; Esquivel D; Romero-Salguero FJ Inorg Chem; 2023 Jul; 62(30):11954-11965. PubMed ID: 37459184 [TBL] [Abstract][Full Text] [Related]
12. Atomically dispersed dinuclear iridium active sites for efficient and stable electrocatalytic chlorine evolution reaction. Yu Z; Xia G; Diaconescu VM; Simonelli L; LaGrow AP; Tai Z; Xiang X; Xiong D; Liu L Chem Sci; 2024 Jun; 15(24):9216-9223. PubMed ID: 38903208 [TBL] [Abstract][Full Text] [Related]
13. Research progress on MOFs and their derivatives as promising and efficient electrode materials for electrocatalytic hydrogen production from water. Cao X; Gao Y; Li Y; Weragoda DM; Tian G; Zhang W; Zhang Z; Zhao X; Chen B RSC Adv; 2023 Aug; 13(35):24393-24411. PubMed ID: 37583672 [TBL] [Abstract][Full Text] [Related]
14. Iridium(III) Bis-Pyridine-2-Sulfonamide Complexes as Efficient and Durable Catalysts for Homogeneous Water Oxidation. Li M; Takada K; Goldsmith JI; Bernhard S Inorg Chem; 2016 Jan; 55(2):518-26. PubMed ID: 26355840 [TBL] [Abstract][Full Text] [Related]
15. Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin. Zhang Y; Nsabimana A; Zhu L; Bo X; Han C; Li M; Guo L Talanta; 2014 Nov; 129():55-62. PubMed ID: 25127564 [TBL] [Abstract][Full Text] [Related]