These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29527646)

  • 21. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.).
    Ali F; Peng Q; Wang D; Cui Z; Huang J; Fu D; Liang D
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8315-8325. PubMed ID: 28161863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems.
    Pettine M; Gennari F; Campanella L
    Chemosphere; 2013 Jan; 90(2):245-50. PubMed ID: 22858257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of phosphate addition on the sorption-desorption reaction of selenium in Japanese agricultural soils.
    Nakamaru Y; Tagami K; Uchida S
    Chemosphere; 2006 Mar; 63(1):109-15. PubMed ID: 16376408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils.
    Wright MT; Parker DR; Amrhein C
    Environ Sci Technol; 2003 Oct; 37(20):4709-16. PubMed ID: 14594382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China.
    Du Y; Luo K; Ni R; Hussain R
    Environ Geochem Health; 2018 Oct; 40(5):2049-2069. PubMed ID: 29497886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice.
    Zhang H; Feng X; Jiang C; Li Q; Liu Y; Gu C; Shang L; Li P; Lin Y; Larssen T
    Environ Pollut; 2014 May; 188():27-36. PubMed ID: 24531269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China.
    Chang C; Yin R; Wang X; Shao S; Chen C; Zhang H
    Sci Total Environ; 2019 Jun; 669():83-90. PubMed ID: 30878943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils.
    Zhao X; Jiang T; Du B
    Chemosphere; 2014 Mar; 99():41-8. PubMed ID: 24289979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sources, Fraction Distribution and Health Risk Assessment of Selenium (Se) in Dashan Village, a Se-Rich Area in Anhui Province, China.
    Zhao B; Xing C; Zhou S; Wu X; Yang R; Yan S
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):545-550. PubMed ID: 32179940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil attenuation of As(III, V) and Se(IV, VI) seepage potential at ash disposal facilities.
    Hyun S; Lee LS
    Chemosphere; 2013 Nov; 93(9):2132-9. PubMed ID: 24054132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selenium extractability from a contaminated fine soil fraction: implication on soil cleanup.
    Lim TT; Goh KH
    Chemosphere; 2005 Jan; 58(1):91-101. PubMed ID: 15522337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constraint on selenium bioavailability caused by its geochemical behavior in typical Kaschin-Beck disease areas in Aba, Sichuan Province of China.
    Lv Y; Yu T; Yang Z; Zhao W; Zhang M; Wang Q
    Sci Total Environ; 2014 Sep; 493():737-49. PubMed ID: 24995640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical speciation and bioavailability of selenium in the rhizosphere of Symphyotrichum eatonii from reclaimed mine soils.
    Oram LL; Strawn DG; Möller G
    Environ Sci Technol; 2011 Feb; 45(3):870-5. PubMed ID: 21166454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox-dependent effects of phosphate on arsenic speciation in paddy soils.
    Deng Y; Weng L; Li Y; Chen Y; Ma J
    Environ Pollut; 2020 Sep; 264():114783. PubMed ID: 32428817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selenium speciation and extractability in Dutch agricultural soils.
    Supriatin S; Weng L; Comans RN
    Sci Total Environ; 2015 Nov; 532():368-82. PubMed ID: 26093220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil and plant selenium at a reclaimed uranium mine.
    Sharmasarkar S; Vance GF
    J Environ Qual; 2002; 31(5):1516-21. PubMed ID: 12371169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hazardous concentrations of selenium in soil and groundwater in North-West India.
    Bajaj M; Eiche E; Neumann T; Winter J; Gallert C
    J Hazard Mater; 2011 May; 189(3):640-6. PubMed ID: 21324586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.
    Favorito JE; Luxton TP; Eick MJ; Grossl PR
    Environ Pollut; 2017 Oct; 229():911-921. PubMed ID: 28781183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selenium in soil and endemic diseases in China.
    Tan J; Zhu W; Wang W; Li R; Hou S; Wang D; Yang L
    Sci Total Environ; 2002 Feb; 284(1-3):227-35. PubMed ID: 11846167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils.
    Zhang Z; Yuan L; Qi S; Yin X
    Sci Total Environ; 2019 Oct; 688():1228-1235. PubMed ID: 31726553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.