These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29527705)

  • 21. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.
    Li H; Liao JC
    Microb Cell Fact; 2013 Jan; 12():4. PubMed ID: 23339487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocontainment of Engineered
    Lee HJ; Choi JI; Woo HM
    J Agric Food Chem; 2021 Jan; 69(2):698-703. PubMed ID: 33411536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria.
    Sekar N; Jain R; Yan Y; Ramasamy RP
    Biotechnol Bioeng; 2016 Mar; 113(3):675-9. PubMed ID: 26348367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering cyanobacteria for converting carbon dioxide into isomaltulose.
    Wu Y; Sun J; Xu X; Mao S; Luan G; Lu X
    J Biotechnol; 2023 Feb; 364():1-4. PubMed ID: 36702257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942.
    Qiao C; Duan Y; Zhang M; Hagemann M; Luo Q; Lu X
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthetic 1,8-cineole production using cyanobacteria.
    Sakamaki Y; Ono M; Shigenari N; Chibazakura T; Shimomura K; Watanabe S
    Biosci Biotechnol Biochem; 2023 Apr; 87(5):563-568. PubMed ID: 36810583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.
    Kanno M; Atsumi S
    ACS Synth Biol; 2017 Jan; 6(1):69-75. PubMed ID: 27643408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate.
    Lan EI; Wei CT
    Metab Eng; 2016 Nov; 38():483-493. PubMed ID: 27989804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Library of Tunable, Portable, and Inducer-Free Promoters Derived from Cyanobacteria.
    Sengupta A; Madhu S; Wangikar PP
    ACS Synth Biol; 2020 Jul; 9(7):1790-1801. PubMed ID: 32551554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic production of α-farnesene by engineered Synechococcus elongatus UTEX 2973 from carbon dioxide.
    Rautela A; Yadav I; Gangwar A; Chatterjee R; Kumar S
    Bioresour Technol; 2024 Mar; 396():130432. PubMed ID: 38346593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomics and metabolomics of engineered Synechococcus elongatus during photomixotrophic growth.
    Tan LR; Cao YQ; Li JW; Xia PF; Wang SG
    Microb Cell Fact; 2022 Mar; 21(1):31. PubMed ID: 35248031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Cyanobacterial Cell Factories for Photosynthetic Production of Fructose.
    Sun J; Zhang Z; Zhang S; Dan Y; Sun H; Wu Y; Luan G; Lu X
    ACS Synth Biol; 2023 Oct; 12(10):3008-3019. PubMed ID: 37728873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance.
    Srivastava V; Amanna R; Rowden SJL; Sengupta S; Madhu S; Howe CJ; Wangikar PP
    J Biosci Bioeng; 2021 May; 131(5):491-500. PubMed ID: 33610455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic identification of a neutral site on chromosome of Synechococcus sp. PCC7002, a promising photosynthetic chassis strain.
    Wang M; Luan G; Lu X
    J Biotechnol; 2019 Apr; 295():37-40. PubMed ID: 30853638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A carbon sink pathway increases carbon productivity in cyanobacteria.
    Oliver JWK; Atsumi S
    Metab Eng; 2015 May; 29():106-112. PubMed ID: 25777135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.
    Choi SY; Lee HJ; Choi J; Kim J; Sim SJ; Um Y; Kim Y; Lee TS; Keasling JD; Woo HM
    Biotechnol Biofuels; 2016; 9():202. PubMed ID: 27688805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology.
    Yadav I; Rautela A; Kumar S
    World J Microbiol Biotechnol; 2021 Oct; 37(12):201. PubMed ID: 34664124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulation of sugars and nucleosides in response to high salt and butanol stress in 1-butanol producing Synechococcus elongatus.
    Fathima AM; Laviña WA; Putri SP; Fukusaki E
    J Biosci Bioeng; 2020 Feb; 129(2):177-183. PubMed ID: 31542348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production.
    Vu TT; Hill EA; Kucek LA; Konopka AE; Beliaev AS; Reed JL
    Biotechnol J; 2013 May; 8(5):619-30. PubMed ID: 23613453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria.
    Lai MJ; Tsai JC; Lan EI
    Bioresour Technol; 2022 Dec; 366():128131. PubMed ID: 36252759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.