These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29528148)

  • 21. Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.
    Tauzin AS; Kwiatkowski KJ; Orlovsky NI; Smith CJ; Creagh AL; Haynes CA; Wawrzak Z; Brumer H; Koropatkin NM
    mBio; 2016 Apr; 7(2):e02134-15. PubMed ID: 27118585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycan recognition by the Bacteroidetes Sus-like systems.
    Bolam DN; Koropatkin NM
    Curr Opin Struct Biol; 2012 Oct; 22(5):563-9. PubMed ID: 22819666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TonB-dependent transporters in the Bacteroidetes: Unique domain structures and potential functions.
    Pollet RM; Martin LM; Koropatkin NM
    Mol Microbiol; 2021 Mar; 115(3):490-501. PubMed ID: 33448497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus.
    Correia VG; Trovão F; Pinheiro BA; Brás JLA; Silva LM; Nunes C; Coimbra MA; Liu Y; Feizi T; Fontes CMGA; Mulloy B; Chai W; Carvalho AL; Palma AS
    Microbiol Spectr; 2021 Dec; 9(3):e0182621. PubMed ID: 34817219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus.
    Foley MH; Déjean G; Hemsworth GR; Davies GJ; Brumer H; Koropatkin NM
    J Mol Biol; 2019 Mar; 431(5):981-995. PubMed ID: 30668971
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Wong JPH; Chillier N; Fischer-Stettler M; Zeeman SC; Battin TJ; Persat A
    mBio; 2024 Mar; 15(3):e0259923. PubMed ID: 38376161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteroides thetaiotaomicron.
    Porter NT; Luis AS; Martens EC
    Trends Microbiol; 2018 Nov; 26(11):966-967. PubMed ID: 30193959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for the flexible recognition of α-glucan substrates by Bacteroides thetaiotaomicron SusG.
    Arnal G; Cockburn DW; Brumer H; Koropatkin NM
    Protein Sci; 2018 Jun; 27(6):1093-1101. PubMed ID: 29603462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota.
    Tamura K; Dejean G; Van Petegem F; Brumer H
    J Biol Chem; 2021; 296():100415. PubMed ID: 33587952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes.
    Anderson KL; Salyers AA
    J Bacteriol; 1989 Jun; 171(6):3192-8. PubMed ID: 2722747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sus out sugars in.
    Gilbert HJ
    Structure; 2008 Jul; 16(7):987-9. PubMed ID: 18611370
    [No Abstract]   [Full Text] [Related]  

  • 32. BoGH13A
    Brown HA; DeVeaux AL; Juliano BR; Photenhauer AL; Boulinguiez M; Bornschein RE; Wawrzak Z; Ruotolo BT; Terrapon N; Koropatkin NM
    Cell Mol Life Sci; 2023 Jul; 80(8):232. PubMed ID: 37500984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xylo-oligosaccharide-based prebiotics upregulate the proteins of the Sus-like system in caecal Bacteroidetes of the chicken: evidence of stimbiotic mechanism.
    Amir SE; Naeem M; Boocock D; Coveney C; O'Neill HM; Bedford MR; Burton EJ
    Poult Sci; 2023 Dec; 102(12):103113. PubMed ID: 37856910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron.
    Anderson KL; Salyers AA
    J Bacteriol; 1989 Jun; 171(6):3199-204. PubMed ID: 2722748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.
    Tuncil YE; Xiao Y; Porter NT; Reuhs BL; Martens EC; Hamaker BR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prioritization of polysaccharide utilization and control of regulator activation in Bacteroides thetaiotaomicron.
    Schwalm ND; Townsend GE; Groisman EA
    Mol Microbiol; 2017 Apr; 104(1):32-45. PubMed ID: 28009067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron.
    Shipman JA; Cho KH; Siegel HA; Salyers AA
    J Bacteriol; 1999 Dec; 181(23):7206-11. PubMed ID: 10572122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in
    Adams AND; Azam MS; Costliow ZA; Ma X; Degnan PH; Vanderpool CK
    J Bacteriol; 2021 Oct; 203(21):e0021721. PubMed ID: 34251866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Host glycan utilization within the Bacteroidetes Sus-like paradigm.
    Brown HA; Koropatkin NM
    Glycobiology; 2021 Jun; 31(6):697-706. PubMed ID: 32518945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-molecule dynamics of surface lipoproteins in bacteroides indicate similarities and cooperativity.
    Geffroy L; Brown HA; DeVeaux AL; Koropatkin NM; Biteen JS
    Biophys J; 2022 Dec; 121(23):4644-4655. PubMed ID: 36266970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.