These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29528212)

  • 21. Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics.
    Mendis BG; Gachet D; Major JD; Durose K
    Phys Rev Lett; 2015 Nov; 115(21):218701. PubMed ID: 26636877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lattice mismatch alleviation in p-CdTe/n-Si heterostructure by surface engineering on Si substrate.
    Isah M; Doroody C; Rahman KS; Harif MN; Kiong TS; Zuhdi AWM
    Heliyon; 2023 Nov; 9(11):e21536. PubMed ID: 38027560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning Band Alignment at Grain Boundaries for Efficiency Enhancement in Cu
    Li W; Li W; Chen G; Wu L; Zhang J; Chen M; Zhong G; Zhu J; Feng Y; Zeng H; Yang C
    ACS Nano; 2023 Aug; 17(16):15742-15750. PubMed ID: 37578321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.
    Sun C; Paulauskas T; Sen FG; Lian G; Wang J; Buurma C; Chan MK; Klie RF; Kim MJ
    Sci Rep; 2016 Jun; 6():27009. PubMed ID: 27255415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Grain boundary engineering for improved thin silicon photovoltaics.
    Raghunathan R; Johlin E; Grossman JC
    Nano Lett; 2014 Sep; 14(9):4943-50. PubMed ID: 24963798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscopic evidence for the modification of the electronic structure at grain boundaries of Cu(In(1-x),Ga(x))Se2 films.
    Azulay D; Balberg I; Millo O
    Phys Rev Lett; 2012 Feb; 108(7):076603. PubMed ID: 22401233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passivating Grain Boundaries in Polycrystalline CdTe.
    Tong CJ; McKenna KP
    J Phys Chem C Nanomater Interfaces; 2019 Oct; 123(39):23882-23889. PubMed ID: 32064017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Te/CdTe and Al/CdTe Interfacial Energy Band Alignment by Atomistic Modeling.
    Nicholson AP; Shah A; Pandey R; Munshi AH; Sites J; Sampath W
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29412-29421. PubMed ID: 35700391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb
    Williams RE; Ramasse QM; McKenna KP; Phillips LJ; Yates PJ; Hutter OS; Durose K; Major JD; Mendis BG
    ACS Appl Mater Interfaces; 2020 May; 12(19):21730-21738. PubMed ID: 32314567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.
    Crisp RW; Panthani MG; Rance WL; Duenow JN; Parilla PA; Callahan R; Dabney MS; Berry JJ; Talapin DV; Luther JM
    ACS Nano; 2014 Sep; 8(9):9063-72. PubMed ID: 25133302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency.
    Xin H; Vorpahl SM; Collord AD; Braly IL; Uhl AR; Krueger BW; Ginger DS; Hillhouse HW
    Phys Chem Chem Phys; 2015 Oct; 17(37):23859-66. PubMed ID: 26302694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.
    Kranz L; Gretener C; Perrenoud J; Schmitt R; Pianezzi F; La Mattina F; Blösch P; Cheah E; Chirilă A; Fella CM; Hagendorfer H; Jäger T; Nishiwaki S; Uhl AR; Buecheler S; Tiwari AN
    Nat Commun; 2013; 4():2306. PubMed ID: 23942035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced optoelectronic quality of perovskite films with excess CH
    Zhang Y; Lv H; Cui C; Xu L; Wang P; Wang H; Yu X; Xie J; Huang J; Tang Z; Yang D
    Nanotechnology; 2017 May; 28(20):205401. PubMed ID: 28346215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Electrical Behaviors of Grain Boundaries in Polycrystalline Optoelectronic Materials.
    Gao Z; Leng C; Zhao H; Wei X; Shi H; Xiao Z
    Adv Mater; 2024 Jan; 36(4):e2304855. PubMed ID: 37572037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carrier Separation Enhanced by High Angle Twist Grain Boundaries in Cesium Lead Bromide Perovskites.
    Song K; Fan Y; Liu J; Qi D; Lu N; Qin W
    J Phys Chem Lett; 2022 Aug; 13(31):7206-7212. PubMed ID: 35912980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast charge carrier relaxation and charge transfer processes in CdS/CdTe thin films.
    Pandit B; Dharmadasa R; Dharmadasa IM; Druffel T; Liu J
    Phys Chem Chem Phys; 2015 Jul; 17(26):16760-6. PubMed ID: 26033446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlorine activated stacking fault removal mechanism in thin film CdTe solar cells: the missing piece.
    Hatton P; Watts MJ; Abbas A; Walls JM; Smith R; Goddard P
    Nat Commun; 2021 Aug; 12(1):4938. PubMed ID: 34426582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Grain Boundary Facilitates Photocatalytic Reaction in Rutile TiO
    Wei Y; Zhou Z; Fang WH; Long R
    J Phys Chem Lett; 2018 Oct; 9(19):5884-5889. PubMed ID: 30247916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermi-level pinning in methylammonium lead iodide perovskites.
    Gallet T; Grabowski D; Kirchartz T; Redinger A
    Nanoscale; 2019 Sep; 11(36):16828-16836. PubMed ID: 31475704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linking Macroscopic and Nanoscopic Ionic Conductivity: A Semiempirical Framework for Characterizing Grain Boundary Conductivity in Polycrystalline Ceramics.
    Bowman WJ; Darbal A; Crozier PA
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):507-517. PubMed ID: 31800213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.