These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 29528557)
1. Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus Under Arsenic Stress. Farooq MA; Zhang K; Islam F; Wang J; Athar HUR; Nawaz A; Ullah Zafar Z; Xu J; Zhou W Proteomics; 2018 May; 18(10):e1700290. PubMed ID: 29528557 [TBL] [Abstract][Full Text] [Related]
2. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. Zhu M; Dai S; Zhu N; Booy A; Simons B; Yi S; Chen S J Proteome Res; 2012 Jul; 11(7):3728-42. PubMed ID: 22639841 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. Rossato L; MacDuff JH; Laine P; Le Deunff E; Ourry A J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924 [TBL] [Abstract][Full Text] [Related]
4. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Desclos M; Dubousset L; Etienne P; Le Caherec F; Satoh H; Bonnefoy J; Ourry A; Avice JC Plant Physiol; 2008 Aug; 147(4):1830-44. PubMed ID: 18552235 [TBL] [Abstract][Full Text] [Related]
5. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots. Gharechahi J; Khalili M; Hasanloo T; Salekdeh GH Plant Physiol Biochem; 2013 Sep; 70():115-22. PubMed ID: 23771036 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive proteomic analysis of arsenic induced toxicity reveals the mechanism of multilevel coordination of efficient defense and energy metabolism in two Brassica napus cultivars. Farooq MA; Hong Z; Islam F; Noor Y; Hannan F; Zhang Y; Ayyaz A; Mwamba TM; Zhou W; Song W Ecotoxicol Environ Saf; 2021 Jan; 208():111744. PubMed ID: 33396070 [TBL] [Abstract][Full Text] [Related]
7. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. Tayyab N; Naz R; Yasmin H; Nosheen A; Keyani R; Sajjad M; Hassan MN; Roberts TH PLoS One; 2020; 15(5):e0232269. PubMed ID: 32357181 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659 [TBL] [Abstract][Full Text] [Related]
9. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of Kurowska MM; Daszkowska-Golec A; Gajecka M; Kościelniak P; Bierza W; Szarejko I Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32570736 [TBL] [Abstract][Full Text] [Related]
10. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. Chen Y; Pang Q; Dai S; Wang Y; Chen S; Yan X J Plant Physiol; 2011 Jul; 168(10):995-1008. PubMed ID: 21377756 [TBL] [Abstract][Full Text] [Related]
11. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. Zhu M; Zhu N; Song WY; Harmon AC; Assmann SM; Chen S Plant J; 2014 May; 78(3):491-515. PubMed ID: 24580573 [TBL] [Abstract][Full Text] [Related]
12. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Li Y; Nie Y; Zhang Z; Ye Z; Zou X; Zhang L; Wang Z Proteomics; 2014 May; 14(9):1088-101. PubMed ID: 24505015 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. Maserti BE; Del Carratore R; Croce CM; Podda A; Migheli Q; Froelicher Y; Luro F; Morillon R; Ollitrault P; Talon M; Rossignol M J Plant Physiol; 2011 Mar; 168(4):392-402. PubMed ID: 20926159 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. Nie G; Zhou J; Jiang Y; He J; Wang Y; Liao Z; Appiah C; Li D; Feng G; Huang L; Wang X; Zhang X BMC Plant Biol; 2022 Feb; 22(1):68. PubMed ID: 35151272 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein. Rossato L; Le Dantec C; Laine P; Ourry A J Exp Bot; 2002 Feb; 53(367):265-75. PubMed ID: 11807130 [TBL] [Abstract][Full Text] [Related]
17. Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea. Hao da C; Chen SL; Osbourn A; Kontogianni VG; Liu LW; Jordán MJ Gene; 2015 Mar; 558(1):41-53. PubMed ID: 25536164 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L. Ali B; Gill RA; Yang S; Gill MB; Farooq MA; Liu D; Daud MK; Ali S; Zhou W PLoS One; 2015; 10(4):e0123328. PubMed ID: 25909456 [TBL] [Abstract][Full Text] [Related]
19. Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. Alvarez S; Zhu M; Chen S J Proteomics; 2009 Nov; 73(1):30-40. PubMed ID: 19628057 [TBL] [Abstract][Full Text] [Related]
20. Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in Ju YH; Roy SK; Roy Choudhury A; Kwon SJ; Choi JY; Rahman MA; Katsube-Tanaka T; Shiraiwa T; Lee MS; Cho K; Woo SH Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]