These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29529006)

  • 1. A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise.
    Arenberg JG; Parkinson WS; Litvak L; Chen C; Kreft HA; Oxenham AJ
    Ear Hear; 2018; 39(6):1136-1145. PubMed ID: 29529006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Current Focusing Compared to Monopolar Stimulation in a Take-Home Trial of Cochlear Implant Users.
    van Groesen NRA; Briaire JJ; de Jong MAM; Frijns JHM
    Ear Hear; 2023 Mar-Apr 01; 44(2):306-317. PubMed ID: 36279119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparisons between detection threshold and loudness perception for individual cochlear implant channels.
    Bierer JA; Nye AD
    Ear Hear; 2014; 35(6):641-51. PubMed ID: 25036146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Current Focusing: A Novel Approach to Loudness Coding in Cochlear Implants.
    de Jong MAM; Briaire JJ; Frijns JHM
    Ear Hear; 2019; 40(1):34-44. PubMed ID: 29742542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Fixed and Individualized Channel Interaction Coefficients for Speech Perception With Dynamic Focusing Cochlear Implant Strategies.
    Caswell-Midwinter B; Arenberg JG
    Trends Hear; 2023; 27():23312165231176157. PubMed ID: 37226501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matching Automatic Gain Control Across Devices in Bimodal Cochlear Implant Users.
    Veugen LC; Chalupper J; Snik AF; Opstal AJ; Mens LH
    Ear Hear; 2016; 37(3):260-70. PubMed ID: 26656192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception: Current Focusing and Channel Deactivation.
    Bierer JA; Litvak L
    Trends Hear; 2016 Jun; 20():. PubMed ID: 27317668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients.
    Busby PA; Arora K
    Ear Hear; 2016; 37(3):303-11. PubMed ID: 26671316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of programming parameters in children with the advanced bionics cochlear implant.
    Baudhuin J; Cadieux J; Firszt JB; Reeder RM; Maxson JL
    J Am Acad Audiol; 2012 May; 23(5):302-12. PubMed ID: 22533974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude-mapping effects on speech intelligibility with unilateral and bilateral cochlear implants.
    van Hoesel R; Böhm M; Battmer RD; Beckschebe J; Lenarz T
    Ear Hear; 2005 Aug; 26(4):381-8. PubMed ID: 16079633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound-direction identification, interaural time delay discrimination, and speech intelligibility advantages in noise for a bilateral cochlear implant user.
    Van Hoesel R; Ramsden R; Odriscoll M
    Ear Hear; 2002 Apr; 23(2):137-49. PubMed ID: 11951849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations.
    Berenstein CK; Mens LH; Mulder JJ; Vanpoucke FJ
    Ear Hear; 2008 Apr; 29(2):250-60. PubMed ID: 18595189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex.
    Lopez-Poveda EA; Eustaquio-Martín A; Stohl JS; Wolford RD; Schatzer R; Wilson BS
    Ear Hear; 2016; 37(3):e138-48. PubMed ID: 26862711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocoder simulations of highly focused cochlear stimulation with limited dynamic range and discriminable steps.
    Stafford RC; Stafford JW; Wells JD; Loizou PC; Keller MD
    Ear Hear; 2014; 35(2):262-70. PubMed ID: 24322978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Adjustment of Upper Electrical Stimulation Levels in CI Programming and the Effect on Auditory Functioning.
    Vroegop JL; Dingemanse JG; van der Schroeff MP; Metselaar RM; Goedegebure A
    Ear Hear; 2017; 38(4):e232-e240. PubMed ID: 28125445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of vowel length, word stress, and compound words and phrases by postlingually deafened cochlear implant listeners.
    Morris D; Magnusson L; Faulkner A; Jönsson R; Juul H
    J Am Acad Audiol; 2013 Oct; 24(9):879-90. PubMed ID: 24224994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.
    Mens LH; Berenstein CK
    Otol Neurotol; 2005 Sep; 26(5):957-64. PubMed ID: 16151343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.