These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29529270)

  • 1. Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia.
    Dwyer DB; Cabral C; Kambeitz-Ilankovic L; Sanfelici R; Kambeitz J; Calhoun V; Falkai P; Pantelis C; Meisenzahl E; Koutsouleris N
    Schizophr Bull; 2018 Aug; 44(5):1060-1069. PubMed ID: 29529270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods.
    Honnorat N; Dong A; Meisenzahl-Lechner E; Koutsouleris N; Davatzikos C
    Schizophr Res; 2019 Dec; 214():43-50. PubMed ID: 29274735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multisite Machine Learning Analysis Provides a Robust Structural Imaging Signature of Schizophrenia Detectable Across Diverse Patient Populations and Within Individuals.
    Rozycki M; Satterthwaite TD; Koutsouleris N; Erus G; Doshi J; Wolf DH; Fan Y; Gur RE; Gur RC; Meisenzahl EM; Zhuo C; Yin H; Yan H; Yue W; Zhang D; Davatzikos C
    Schizophr Bull; 2018 Aug; 44(5):1035-1044. PubMed ID: 29186619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity.
    de Pierrefeu A; Löfstedt T; Laidi C; Hadj-Selem F; Bourgin J; Hajek T; Spaniel F; Kolenic M; Ciuciu P; Hamdani N; Leboyer M; Fovet T; Jardri R; Houenou J; Duchesnay E
    Acta Psychiatr Scand; 2018 Dec; 138(6):571-580. PubMed ID: 30242828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning.
    Chand GB; Dwyer DB; Erus G; Sotiras A; Varol E; Srinivasan D; Doshi J; Pomponio R; Pigoni A; Dazzan P; Kahn RS; Schnack HG; Zanetti MV; Meisenzahl E; Busatto GF; Crespo-Facorro B; Pantelis C; Wood SJ; Zhuo C; Shinohara RT; Shou H; Fan Y; Gur RC; Gur RE; Satterthwaite TD; Koutsouleris N; Wolf DH; Davatzikos C
    Brain; 2020 Mar; 143(3):1027-1038. PubMed ID: 32103250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients.
    Ebdrup BH; Axelsen MC; Bak N; Fagerlund B; Oranje B; Raghava JM; Nielsen MØ; Rostrup E; Hansen LK; Glenthøj BY
    Psychol Med; 2019 Dec; 49(16):2754-2763. PubMed ID: 30560750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach.
    Gould IC; Shepherd AM; Laurens KR; Cairns MJ; Carr VJ; Green MJ
    Neuroimage Clin; 2014; 6():229-36. PubMed ID: 25379435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations.
    Xiao Y; Liao W; Long Z; Tao B; Zhao Q; Luo C; Tamminga CA; Keshavan MS; Pearlson GD; Clementz BA; Gershon ES; Ivleva EI; Keedy SK; Biswal BB; Mechelli A; Lencer R; Sweeney JA; Lui S; Gong Q
    Schizophr Bull; 2022 Jan; 48(1):241-250. PubMed ID: 34508358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation between neuroanatomical and symptomatic subtypes in schizophrenia.
    Chai C; Ding H; Du X; Xie Y; Man W; Zhang Y; Ji Y; Liang M; Zhang B; Ning Y; Zhuo C; Yu C; Qin W
    Eur Psychiatry; 2023 Sep; 66(1):e78. PubMed ID: 37702075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI.
    Xiao Y; Yan Z; Zhao Y; Tao B; Sun H; Li F; Yao L; Zhang W; Chandan S; Liu J; Gong Q; Sweeney JA; Lui S
    Schizophr Res; 2019 Dec; 214():11-17. PubMed ID: 29208422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying schizophrenia subgroups using clustering and supervised learning.
    Talpalaru A; Bhagwat N; Devenyi GA; Lepage M; Chakravarty MM
    Schizophr Res; 2019 Dec; 214():51-59. PubMed ID: 31455518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, cross-sectional VBM study in first-episode and chronic illness.
    Torres US; Duran FL; Schaufelberger MS; Crippa JA; Louzã MR; Sallet PC; Kanegusuku CY; Elkis H; Gattaz WF; Bassitt DP; Zuardi AW; Hallak JE; Leite CC; Castro CC; Santos AC; Murray RM; Busatto GF
    Neuroimage Clin; 2016; 12():1-15. PubMed ID: 27354958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study.
    Winterburn JL; Voineskos AN; Devenyi GA; Plitman E; de la Fuente-Sandoval C; Bhagwat N; Graff-Guerrero A; Knight J; Chakravarty MM
    Schizophr Res; 2019 Dec; 214():3-10. PubMed ID: 29274736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive Subtypes of Schizophrenia Characterized by Differential Brain Volumetric Reductions and Cognitive Decline.
    Weinberg D; Lenroot R; Jacomb I; Allen K; Bruggemann J; Wells R; Balzan R; Liu D; Galletly C; Catts SV; Weickert CS; Weickert TW
    JAMA Psychiatry; 2016 Dec; 73(12):1251-1259. PubMed ID: 27829096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomical subtypes of schizophrenia and relationship with illness duration and deficit status.
    Chew QH; Prakash KNB; Koh LY; Chilla G; Yeow LY; Sim K
    Schizophr Res; 2022 Oct; 248():107-113. PubMed ID: 36030757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latent Clinical-Anatomical Dimensions of Schizophrenia.
    Kirschner M; Shafiei G; Markello RD; Makowski C; Talpalaru A; Hodzic-Santor B; Devenyi GA; Paquola C; Bernhardt BC; Lepage M; Chakravarty MM; Dagher A; Mišić B
    Schizophr Bull; 2020 Dec; 46(6):1426-1438. PubMed ID: 32744604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods.
    Chilla GS; Yeow LY; Chew QH; Sim K; Prakash KNB
    Sci Rep; 2022 Feb; 12(1):2755. PubMed ID: 35177708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features.
    Zarogianni E; Storkey AJ; Johnstone EC; Owens DG; Lawrie SM
    Schizophr Res; 2017 Mar; 181():6-12. PubMed ID: 27613509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers.
    Koutsouleris N; Meisenzahl EM; Borgwardt S; Riecher-Rössler A; Frodl T; Kambeitz J; Köhler Y; Falkai P; Möller HJ; Reiser M; Davatzikos C
    Brain; 2015 Jul; 138(Pt 7):2059-73. PubMed ID: 25935725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia.
    Zanetti MV; Schaufelberger MS; Doshi J; Ou Y; Ferreira LK; Menezes PR; Scazufca M; Davatzikos C; Busatto GF
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Jun; 43():116-25. PubMed ID: 23261522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.