BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29529368)

  • 1. Antenna-Enhanced Fluorescence Correlation Spectroscopy Resolves Calcium-Mediated Lipid-Lipid Interactions.
    Block S; Aćimović SS; Odebo Länk N; Käll M; Höök F
    ACS Nano; 2018 Apr; 12(4):3272-3279. PubMed ID: 29529368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.
    Winkler PM; Regmi R; Flauraud V; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    J Phys Chem Lett; 2018 Jan; 9(1):110-119. PubMed ID: 29240442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS).
    Marquer C; Lévêque-Fort S; Potier MC
    J Vis Exp; 2012 Apr; (62):e3513. PubMed ID: 22508446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choosing the right fluorophore for single-molecule fluorescence studies in a lipid environment.
    Zhang Z; Yomo D; Gradinaru C
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1242-1253. PubMed ID: 28392350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode.
    Sarangi NK; Roobala C; Basu JK
    Methods; 2018 May; 140-141():198-211. PubMed ID: 29175337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence correlation and lifetime correlation spectroscopy applied to the study of supported lipid bilayer models of the cell membrane.
    Basit H; Lopez SG; Keyes TE
    Methods; 2014 Jul; 68(2):286-99. PubMed ID: 24561824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence Correlation Spectroscopy to Examine Protein-Lipid Interactions in Membranes.
    Betaneli V; Mücksch J; Schwille P
    Methods Mol Biol; 2019; 2003():415-447. PubMed ID: 31218628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS).
    Melo AM; Prieto M; Coutinho A
    Methods Mol Biol; 2014; 1076():575-95. PubMed ID: 24108645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy.
    Sankaran J; Manna M; Guo L; Kraut R; Wohland T
    Biophys J; 2009 Nov; 97(9):2630-9. PubMed ID: 19883607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes.
    Bag N; Ng XW; Sankaran J; Wohland T
    Methods Appl Fluoresc; 2016 Jul; 4(3):034003. PubMed ID: 28355150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid--protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy.
    Sánchez SA; Gratton E
    Acc Chem Res; 2005 Jun; 38(6):469-77. PubMed ID: 15966713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy.
    Machán R; Hof M
    Biochim Biophys Acta; 2010 Jul; 1798(7):1377-91. PubMed ID: 20188699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS.
    Jin W; Simsek MF; Pralle A
    Methods; 2018 May; 140-141():151-160. PubMed ID: 29530504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions.
    García-Sáez AJ; Schwille P
    Methods; 2008 Oct; 46(2):116-22. PubMed ID: 18634881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.
    Regmi R; Winkler PM; Flauraud V; Borgman KJE; Manzo C; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    Nano Lett; 2017 Oct; 17(10):6295-6302. PubMed ID: 28926278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.
    Sarangi NK; P II; Ayappa KG; Visweswariah SS; Basu JK
    Langmuir; 2016 Sep; 32(37):9649-57. PubMed ID: 27564541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circle scanning STED fluorescence correlation spectroscopy to quantify membrane dynamics and compartmentalization.
    Maraspini R; Beutel O; Honigmann A
    Methods; 2018 May; 140-141():188-197. PubMed ID: 29258923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FCS in STED microscopy: studying the nanoscale of lipid membrane dynamics.
    Mueller V; Honigmann A; Ringemann C; Medda R; Schwarzmann G; Eggeling C
    Methods Enzymol; 2013; 519():1-38. PubMed ID: 23280106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.