These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29529374)

  • 1. Active Radiative Thermal Switching with Graphene Plasmon Resonators.
    Ilic O; Thomas NH; Christensen T; Sherrott MC; Soljačić M; Minnich AJ; Miller OD; Atwater HA
    ACS Nano; 2018 Mar; 12(3):2474-2481. PubMed ID: 29529374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Field Radiative Heat Transfer Modulation with an Ultrahigh Dynamic Range through Mode Mismatching.
    Shi K; Chen Z; Xing Y; Yang J; Xu X; Evans JS; He S
    Nano Lett; 2022 Oct; 22(19):7753-7760. PubMed ID: 36162118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon.
    van Zwol PJ; Thiele S; Berger C; de Heer WA; Chevrier J
    Phys Rev Lett; 2012 Dec; 109(26):264301. PubMed ID: 23368565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative thermal switch driven by anisotropic black phosphorus plasmons.
    He MJ; Qi H; Ren YT; Zhao YJ; Zhang Y; Shen JD; Antezza M
    Opt Express; 2020 Aug; 28(18):26922-26934. PubMed ID: 32906957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators.
    Nasari H; Abrishamian MS; Berini P
    Opt Express; 2016 Jan; 24(1):708-23. PubMed ID: 26832300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures.
    Thomas NH; Sherrott MC; Broulliet J; Atwater HA; Minnich AJ
    Nano Lett; 2019 Jun; 19(6):3898-3904. PubMed ID: 31141664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-field radiative heat transfer in multilayered graphene system considering equilibrium temperature distribution.
    He MJ; Qi H; Wang YF; Ren YT; Cai WH; Ruan LM
    Opt Express; 2019 Aug; 27(16):A953-A966. PubMed ID: 31510483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams.
    Luo W; Cai W; Xiang Y; Wu W; Shi B; Jiang X; Zhang N; Ren M; Zhang X; Xu J
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28605072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant near-field radiative heat transfer between ultrathin metallic films.
    Wang L; Bie M; Cai W; Ge L; Ji Z; Jia Y; Gong K; Zhang X; Wang J; Xu J
    Opt Express; 2019 Dec; 27(25):36790-36798. PubMed ID: 31873451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental observed plasmon near-field response in isolated suspended graphene resonators.
    Zhang N; Jiang X; Fan J; Luo W; Xiang Y; Wu W; Ren M; Zhang X; Cai W; Xu J
    Nanotechnology; 2019 Dec; 30(50):505201. PubMed ID: 31491784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Frequency Stochastic Switching of Graphene Resonators Near Room Temperature.
    Dolleman RJ; Belardinelli P; Houri S; van der Zant HSJ; Alijani F; Steeneken PG
    Nano Lett; 2019 Feb; 19(2):1282-1288. PubMed ID: 30681865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field thermal radiation between graphene-covered doped silicon plates.
    Lim M; Lee SS; Lee BJ
    Opt Express; 2013 Sep; 21(19):22173-85. PubMed ID: 24104109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative heat transfer at the nanoscale: experimental trends and challenges.
    Lucchesi C; Vaillon R; Chapuis PO
    Nanoscale Horiz; 2021 Mar; 6(3):201-208. PubMed ID: 33533775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement and Manipulation of Near-Field Thermal Radiation Using Hybrid Hyperbolic Polaritons.
    Zhou CL; Zhang Y; Yi HL
    Langmuir; 2022 Jun; 38(25):7689-7698. PubMed ID: 35699142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method.
    He M; Qi H; Ren Y; Zhao Y; Antezza M
    Opt Lett; 2020 May; 45(10):2914-2917. PubMed ID: 32412500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.
    Gilbertson AM; Francescato Y; Roschuk T; Shautsova V; Chen Y; Sidiropoulos TP; Hong M; Giannini V; Maier SA; Cohen LF; Oulton RF
    Nano Lett; 2015 May; 15(5):3458-64. PubMed ID: 25915785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of near-field radiative heat transfer between graphene sheets by strain engineering.
    Ge L; Xu Z; Cang Y; Gong K
    Opt Express; 2019 Aug; 27(16):A1109-A1117. PubMed ID: 31510494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly-efficient radiative thermal rectifiers based on near-field gap variations.
    Yang B; Dai Q
    Nanoscale; 2022 Nov; 14(45):16978-16985. PubMed ID: 36354150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gated tunability and hybridization of localized plasmons in nanostructured graphene.
    Fang Z; Thongrattanasiri S; Schlather A; Liu Z; Ma L; Wang Y; Ajayan PM; Nordlander P; Halas NJ; García de Abajo FJ
    ACS Nano; 2013 Mar; 7(3):2388-95. PubMed ID: 23390960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.