BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29529575)

  • 1. A combined effect of polybrominated diphenyl ether and aquaculture effluent on growth and antioxidative response of mangrove plants.
    Farzana S; Tam NFY
    Chemosphere; 2018 Jun; 201():483-491. PubMed ID: 29529575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and antioxidative response of two mangrove plants to interaction between aquaculture effluent and BDE-99.
    Farzana S; Cheung SG; Zhou HC; Tam NFY
    Sci Total Environ; 2019 Apr; 662():796-804. PubMed ID: 30708295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a polybrominated diphenyl ether congener (BDE-47) on growth and antioxidative enzymes of two mangrove plant species, Kandelia obovata and Avicennia marina, in South China.
    Wang Y; Zhu H; Tam NF
    Mar Pollut Bull; 2014 Aug; 85(2):376-84. PubMed ID: 24631399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidative response of Kandelia obovata, a true mangrove species, to polybrominated diphenyl ethers (BDE-99 and BDE-209) during germination and early growth.
    Farzana S; Chen J; Pan Y; Wong YS; Tam NFY
    Mar Pollut Bull; 2017 Nov; 124(2):1063-1070. PubMed ID: 28034496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Could mangrove plants tolerate and remove BDE-209 in contaminated sediments upon long-term exposure?
    Farzana S; Zhou H; Cheung SG; Tam NFY
    J Hazard Mater; 2019 Oct; 378():120731. PubMed ID: 31202074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aquaculture effluents on fate of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) in contaminated mangrove sediment planted with Kandelia obovata.
    Farzana S; Cheung SG; Tam NFY
    Sci Total Environ; 2019 Nov; 691():71-79. PubMed ID: 31319260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcosm study on fate of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove sediment.
    Zhu H; Wang Y; Tam NF
    J Hazard Mater; 2014 Jan; 265():61-8. PubMed ID: 24333715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced remediation of BDE-209 in contaminated mangrove sediment by planting and aquaculture effluent.
    Farzana S; Cheung SG; Kong RYC; Wong YS; Tam NFY
    Sci Total Environ; 2021 Feb; 754():142094. PubMed ID: 32911149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation.
    Dai M; Lu H; Liu W; Jia H; Hong H; Liu J; Yan C
    Ecotoxicol Environ Saf; 2017 May; 139():272-279. PubMed ID: 28161586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress.
    Peng YL; Wang YS; Fei J; Sun CC; Cheng H
    Ecotoxicology; 2015 Oct; 24(7-8):1722-32. PubMed ID: 26002219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake, biotransformation and physiological response of TBBPA in mangrove plants after hydroponics exposure.
    Jiang Y; Lu H; Wang Y; Hong H; Wang Q; Liu J; Yan C
    Mar Pollut Bull; 2020 Feb; 151():110832. PubMed ID: 32056625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous phosphorus enhances cadmium tolerance by affecting cell wall polysaccharides in two mangrove seedlings Avicennia marina (Forsk.) Vierh and Kandelia obovata (S., L.) Yong differing in cadmium accumulation.
    Dai M; Liu W; Hong H; Lu H; Liu J; Jia H; Yan C
    Mar Pollut Bull; 2018 Jan; 126():86-92. PubMed ID: 29421138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do pyrene and Kandelia obovata improve removal of BDE-209 in mangrove soils?
    Li R; Ding H; Guo M; Shen X; Zan Q
    Chemosphere; 2020 Feb; 240():124873. PubMed ID: 31574439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The uptake of mixed PAHs and PBDEs in wastewater by mangrove plants under different tidal flushing regimes.
    Pi N; Wu Y; Zhu HW; Wong YS; Tam NFY
    Environ Pollut; 2017 Dec; 231(Pt 1):104-114. PubMed ID: 28797899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination and distribution of heavy metals, polybrominated diphenyl ethers and alternative halogenated flame retardants in a pristine mangrove.
    Wu Q; Leung JYS; Tam NFY; Peng Y; Guo P; Zhou S; Li Q; Geng X; Miao S
    Mar Pollut Bull; 2016 Feb; 103(1-2):344-348. PubMed ID: 26759186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mangrove species on removal of tetrabromobisphenol A from contaminated sediments.
    Jiang Y; Lu H; Xia K; Wang Q; Yang J; Hong H; Liu J; Yan C
    Chemosphere; 2020 Apr; 244():125385. PubMed ID: 31790995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione-Ascorbate Cycle Is an Early Warning Indicator of Toxicity of BDE-47 in Mangroves.
    Wang Y; Tam NFY
    J Environ Qual; 2018 Mar; 47(2):212-220. PubMed ID: 29634796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allometric equations may underestimate the contribution of fine roots to mangrove carbon sequestration.
    Chou MQ; Lin WJ; Lin CW; Wu HH; Lin HJ
    Sci Total Environ; 2022 Aug; 833():155032. PubMed ID: 35390388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccumulation and cycling of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in three natural mangrove ecosystems of South China.
    Qiu YW; Qiu HL; Zhang G; Li J
    Sci Total Environ; 2019 Feb; 651(Pt 2):1788-1795. PubMed ID: 30316096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mangrove restoration on sediment properties and bacterial community.
    Ma XX; Jiang ZY; Wu P; Wang YF; Cheng H; Wang YS; Gu JD
    Ecotoxicology; 2021 Oct; 30(8):1672-1679. PubMed ID: 33864552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.