BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29529580)

  • 1. Quantification of colloidal filtration of polystyrene micro-particles on glass substrate using a microfluidic device.
    Sun J; Tandogan N; Gu AZ; Müftü S; Goluch ED; Wan KT
    Colloids Surf B Biointerfaces; 2018 May; 165():381-387. PubMed ID: 29529580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal particle deposition from electrokinetic flow in a microfluidic channel.
    Unni HN; Yang C
    Electrophoresis; 2009 Mar; 30(5):732-41. PubMed ID: 19260008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel cell-based microfluidic multichannel setup-impact of hydrodynamics and surface characteristics on the bioadhesion of polystyrene microspheres.
    Wang XY; Pichl C; Gabor F; Wirth M
    Colloids Surf B Biointerfaces; 2013 Feb; 102():849-56. PubMed ID: 23107963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Plane Rotation of Prolate Colloids Adhered to a Planar Substrate in the Presence of Flow.
    Ran R; Sun J; Müftü S; Gu AZ; Wan KT
    Langmuir; 2023 May; 39(18):6487-6494. PubMed ID: 37098136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimentally derived sticking efficiencies of microparticles using atomic force microscopy.
    Cail TL; Hochella MF
    Environ Sci Technol; 2005 Feb; 39(4):1011-7. PubMed ID: 15773472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow.
    Unni HN; Yang C
    J Colloid Interface Sci; 2005 Nov; 291(1):28-36. PubMed ID: 15964576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal and bacterial deposition: role of gravity.
    Chen G; Hong Y; Walker SL
    Langmuir; 2010 Jan; 26(1):314-9. PubMed ID: 19911823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled flats on spherical polymer colloids.
    Ramírez LM; Milner ST; Snyder CE; Colby RH; Velegol D
    Langmuir; 2010 May; 26(10):7644-9. PubMed ID: 20041681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle Network Self-Assembly of Similar Size Sub-Micron Calcium Alginate and Polystyrene Particles Atop Glass.
    Onuh G; Bar-On R; Manor O
    Macromol Biosci; 2023 Dec; 23(12):e2300219. PubMed ID: 37551162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of a microcapillary impedimetric transducer to changes in surface conductance at liquid/solid interface.
    Bratov A; Abramova N
    J Colloid Interface Sci; 2013 Aug; 403():151-6. PubMed ID: 23684227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed-field separation of particles in a microfluidic device.
    Regtmeier J; Eichhorn R; Duong TT; Reimann P; Anselmetti D; Ros A
    Eur Phys J E Soft Matter; 2007 Apr; 22(4):335-40. PubMed ID: 17492395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.