These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29529808)

  • 1. Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble.
    Liu YM; Bai CH; Wang DY; Wang T; Zheng MH; Wang HF; Zhu AD; Zhang S
    Opt Express; 2018 Mar; 26(5):6143-6157. PubMed ID: 29529808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.
    Yang JY; Wang DY; Bai CH; Guan SY; Gao XY; Zhu AD; Wang HF
    Opt Express; 2019 Aug; 27(16):22855-22867. PubMed ID: 31510570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooling a Rotating Mirror Coupled to a Single Laguerre-Gaussian Cavity Mode Using Parametric Interactions.
    Pan Q; Lv W; Deng L; Huang S; Chen A
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of laser phase noise on the steady-state field-mirror entanglement and ground-state cooling in a Laguerre-Gaussian optorotational system.
    Chen Y; Huang S; Deng L; Chen A
    Opt Express; 2024 May; 32(10):17433-17451. PubMed ID: 38858927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble.
    Zeng W; Nie W; Li L; Chen A
    Sci Rep; 2017 Dec; 7(1):17258. PubMed ID: 29222484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large mechanical squeezing beyond 3dB of hybrid atom-optomechanical systems in a highly unresolved sideband regime.
    Zhang JS; Chen AX
    Opt Express; 2020 Apr; 28(9):12827-12836. PubMed ID: 32403771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system.
    Liao Q; Zhou L; Wang X; Liu Y
    Opt Express; 2022 Oct; 30(21):38776-38788. PubMed ID: 36258435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system.
    Jöckel A; Faber A; Kampschulte T; Korppi M; Rakher MT; Treutlein P
    Nat Nanotechnol; 2015 Jan; 10(1):55-9. PubMed ID: 25420032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state mechanical squeezing in a double-cavity optomechanical system.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Dec; 6():38559. PubMed ID: 27917939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system.
    Li L; Luo RH; Liu L; Zhang S; Zhang JQ
    Sci Rep; 2018 Sep; 8(1):14276. PubMed ID: 30250233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror.
    Bhattacharya M; Meystre P
    Phys Rev Lett; 2007 Oct; 99(15):153603. PubMed ID: 17995165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sideband cooling of micromechanical motion to the quantum ground state.
    Teufel JD; Donner T; Li D; Harlow JW; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Lehnert KW; Simmonds RW
    Nature; 2011 Jul; 475(7356):359-63. PubMed ID: 21734657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Stationary Entanglement of a Laguerre-Gaussian Cavity Mode with a Rotating Mirror via Nonlinear Cross-Kerr Interactions and Parametric Interactions.
    Lai G; Huang S; Deng L; Chen A
    Nanomaterials (Basel); 2024 Aug; 14(17):. PubMed ID: 39269051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters.
    Nie W; Chen A; Lan Y
    Opt Express; 2015 Nov; 23(24):30970-84. PubMed ID: 26698728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanical cavity cooling of an atomic ensemble.
    Schleier-Smith MH; Leroux ID; Zhang H; Van Camp MA; Vuletić V
    Phys Rev Lett; 2011 Sep; 107(14):143005. PubMed ID: 22107191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable high-order sideband generation in a coupled double-cavity optomechanical system.
    Liu JH; Yu YF; Wu Q; Wang JD; Zhang ZM
    Opt Express; 2021 Apr; 29(8):12266-12277. PubMed ID: 33984990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of non-classical states of mirror motion in the single-photon strong-coupling regime.
    Gu WJ; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Jul; 22(15):18254-67. PubMed ID: 25089445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
    Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA
    Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.