These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29529826)

  • 1. Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers.
    López-Zubieta BA; Jarque EC; Sola ÍJ; Roman JS
    Opt Express; 2018 Mar; 26(5):6345-6350. PubMed ID: 29529826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of pulse self-compression in hollow capillary fibers using decreasing pressure gradients.
    Galán MF; Conejero Jarque E; San Roman J
    Opt Express; 2022 Feb; 30(5):6755-6767. PubMed ID: 35299454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers.
    Bessonov AD; Zheltikov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066618. PubMed ID: 16907008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression of ultrashort laser pulses in planar hollow waveguides: a stability analysis.
    Arnold CL; Akturk S; Franco M; Couairon A; Mysyrowicz A
    Opt Express; 2009 Jun; 17(13):11122-9. PubMed ID: 19550512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers: erratum.
    López-Zubieta BA; Jarque EC; Sola ÍJ; Roman JS
    Opt Express; 2018 May; 26(11):14108. PubMed ID: 29877453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the spatial confinement on the self-focusing of ultrashort pulses in hollow-core fibers.
    Crego A; Conejero Jarque E; San Roman J
    Sci Rep; 2019 Jul; 9(1):9546. PubMed ID: 31267002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probe-controlled soliton frequency shift in the regime of optical event horizon.
    Gu J; Guo H; Wang S; Zeng X
    Opt Express; 2015 Aug; 23(17):22285-90. PubMed ID: 26368200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk.
    Shumakova V; Malevich P; Ališauskas S; Voronin A; Zheltikov AM; Faccio D; Kartashov D; Baltuška A; Pugžlys A
    Nat Commun; 2016 Sep; 7():12877. PubMed ID: 27620117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionization-assisted guided-wave pulse compression to extreme peak powers and single-cycle pulse widths in the mid-infrared.
    Voronin AA; Gordienko VM; Platonenko VT; Panchenko VY; Zheltikov AM
    Opt Lett; 2010 Nov; 35(21):3640-2. PubMed ID: 21042376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression of single-cycle mid-infrared pulses by Raman-active molecular modulators.
    Kalosha VP; Herrmann J
    Opt Lett; 2003 Jun; 28(11):950-2. PubMed ID: 12816256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-matched four-wave mixing of sub-100-TW/ cm2 femtosecond laser pulses in isolated air-guided modes of a hollow photonic-crystal fiber.
    Konorov SO; Serebryannikov EE; Akimov DA; Ivanov AA; Alfimov MV; Zheltikov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066625. PubMed ID: 15697544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-two-cycle pulses by soliton self-compression in highly nonlinear photonic crystal fibers.
    Amorim AA; Tognetti MV; Oliveira P; Silva JL; Bernardo LM; Kärtner FX; Crespo HM
    Opt Lett; 2009 Dec; 34(24):3851-3. PubMed ID: 20016635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjustable pulse compression scheme for generation of few-cycle pulses in the midinfrared.
    Demircan A; Amiranashvili S; Brée C; Morgner U; Steinmeyer G
    Opt Lett; 2014 May; 39(9):2735-8. PubMed ID: 24784090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength.
    Mosley PJ; Huang WC; Welch MG; Mangan BJ; Wadsworth WJ; Knight JC
    Opt Lett; 2010 Nov; 35(21):3589-91. PubMed ID: 21042359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of decreasing pressure on soliton self-compression in higher-order modes of a gas-filled capillary.
    Wan Y; Chang W
    Opt Express; 2021 Mar; 29(5):7070-7083. PubMed ID: 33726215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning.
    Zhang S; Fu Z; Zhu B; Fan G; Chen Y; Wang S; Liu Y; Baltuska A; Jin C; Tian C; Tao Z
    Light Sci Appl; 2021 Mar; 10(1):53. PubMed ID: 33692333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration.
    Lu CH; Wu WH; Kuo SH; Guo JY; Chen MC; Yang SD; Kung AH
    Opt Express; 2019 May; 27(11):15638-15648. PubMed ID: 31163758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond pulse compression by modulation of intensity envelope in a gas-filled hollow-core fiber.
    Zhao R; Wang D; Zhao Y; Leng Y; Li R
    Opt Express; 2017 Oct; 25(22):27795-27805. PubMed ID: 29092249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber.
    Mak KF; Travers JC; Joly NY; Abdolvand A; Russell PS
    Opt Lett; 2013 Sep; 38(18):3592-5. PubMed ID: 24104822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression.
    Wang YY; Peng X; Alharbi M; Dutin CF; Bradley TD; Gérôme F; Mielke M; Booth T; Benabid F
    Opt Lett; 2012 Aug; 37(15):3111-3. PubMed ID: 22859102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.