BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29529990)

  • 1. Gender differences in the psychophysiological effects induced by VOCs emitted from Japanese cedar (Cryptomeria japonica).
    Matsubara E; Kawai S
    Environ Health Prev Med; 2018 Mar; 23(1):10. PubMed ID: 29529990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhalation of Japanese cedar (Cryptomeria japonica) wood odor causes psychological relaxation after monotonous work among female participants.
    Matsubara E; Ohira T
    Biomed Res; 2018; 39(5):241-249. PubMed ID: 30333431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential Oil of Japanese Cedar (Cryptomeria japonica) Wood Increases Salivary Dehydroepiandrosterone Sulfate Levels after Monotonous Work.
    Matsubara E; Tsunetsugu Y; Ohira T; Sugiyama M
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28117719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica).
    Cheng SS; Lin HY; Chang ST
    J Agric Food Chem; 2005 Feb; 53(3):614-9. PubMed ID: 15686410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germination inhibitor from the Japanese cedar Cryptomeria japonica.
    Chen XH; Kashiwagi T; Tebayashi S; Kim CS
    Z Naturforsch C J Biosci; 2005; 60(1-2):79-82. PubMed ID: 15787249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of odorous volatile organic compounds emitted from wood-based panels.
    Liu Y; Zhu X; Qin X; Wang W; Hu Y; Yuan D
    Environ Monit Assess; 2020 May; 192(6):348. PubMed ID: 32388623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels.
    Takao Y; Kuriyama I; Yamada T; Mizoguchi H; Yoshida H; Mizushina Y
    Mol Med Rep; 2012 May; 5(5):1163-8. PubMed ID: 22395293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The indoor volatile organic compound (VOC) characteristics and source identification in a new university campus in Tianjin, China.
    Kang J; Liu J; Pei J
    J Air Waste Manag Assoc; 2017 Jun; 67(6):725-737. PubMed ID: 28152336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Volatile organic compounds (VOCs) emitted from wood furniture--estimation of emission rate by passive flux sampler].
    Jinno H; Tanaka-Kagawa T; Furuta M; Shibatsuji M; Nishimura T
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2011; (129):86-92. PubMed ID: 22259847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TD-GC/MS analysis of indoor air pollutants (VOCs, PM) in hair salons.
    Kaikiti C; Stylianou M; Agapiou A
    Chemosphere; 2022 May; 294():133691. PubMed ID: 35065178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical composition and termiticidal activity of essential oils from different tissues of Chinese cedar (cryptomeria fortunei).
    Xie Y; Li M; Huang Q; Lei C
    Nat Prod Commun; 2014 May; 9(5):719-22. PubMed ID: 25026732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.
    Gminski R; Tang T; Mersch-Sundermann V
    Toxicol Lett; 2010 Jun; 196(1):33-41. PubMed ID: 20362040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifeedants against Locusta migratoria from the Japanese Cedar, Cryptomeria japonica.
    Kashiwagi T; Wu B; Iyota K; Chen XH; Tebayashi SI; Kim CS
    Biosci Biotechnol Biochem; 2007 Apr; 71(4):966-70. PubMed ID: 17420583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of pollen dispersion in the neighborhood of Tokyo, Japan in the spring of 2005 and 2006.
    Ishibashi Y; Ohno H; Oh-ishi S; Matsuoka T; Kizaki T; Yoshizumi K
    Int J Environ Res Public Health; 2008 Mar; 5(1):76-85. PubMed ID: 18441408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of (R)-3-hydroxybutyric acid secretion during Halomonas sp. KM-1 cultivation with saccharified Japanese cedar by the addition of urea.
    Kawata Y; Nojiri M; Matsushita I; Tsubota J
    Lett Appl Microbiol; 2015 Oct; 61(4):397-402. PubMed ID: 26249654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Isolation and preparation of sesquiterpenols from the Japanese cedar, Cryptomeria japonica D. Don, by preparative reversed-phase high performance liquid chromatography and its characterization].
    Chen X; Zhang H; Bi K; Kim CS; Horiike M
    Se Pu; 2005 Jan; 23(1):85-7. PubMed ID: 15881375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation.
    Adamová T; Hradecký J; Pánek M
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33036167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated Indoor Volatile Organic Compound Exposure in the Niger Delta Region of Nigeria.
    Kponee KZ; Nwanaji-Enwerem JC; Fu X; Kakulu II; Weisskopf MG; Jia C
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30200602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indoor levels of volatile organic compounds and formaldehyde from emission sources at elderly care centers in Korea.
    Lee K; Choi JH; Lee S; Park HJ; Oh YJ; Kim GB; Lee WS; Son BS
    PLoS One; 2018; 13(6):e0197495. PubMed ID: 29879122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of air quality in indoor and outdoor environments: Impact of anti-COVID-19 measures.
    Ninyà N; Vallecillos L; Marcé RM; Borrull F
    Sci Total Environ; 2022 Aug; 836():155611. PubMed ID: 35504390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.