These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29529991)

  • 1. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution.
    Yang S; Wang J; Ng RT
    BMC Bioinformatics; 2018 Mar; 19(1):96. PubMed ID: 29529991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Prediction of RNA-Binding Proteins and Binding Sites.
    Si J; Cui J; Cheng J; Wu R
    Int J Mol Sci; 2015 Nov; 16(11):26303-17. PubMed ID: 26540053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProbeRating: a recommender system to infer binding profiles for nucleic acid-binding proteins.
    Yang S; Liu X; Ng RT
    Bioinformatics; 2020 Sep; 36(18):4797-4804. PubMed ID: 32573679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.
    Kazan H; Ray D; Chan ET; Hughes TR; Morris Q
    PLoS Comput Biol; 2010 Jul; 6(7):e1000832. PubMed ID: 20617199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RBPLight: a computational tool for discovery of plant-specific RNA-binding proteins using light gradient boosting machine and ensemble of evolutionary features.
    Pradhan UK; Meher PK; Naha S; Pal S; Gupta S; Gupta A; Parsad R
    Brief Funct Genomics; 2023 Nov; 22(5):401-410. PubMed ID: 37158175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins.
    Kazan H; Morris Q
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W180-6. PubMed ID: 23754853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beRBP: binding estimation for human RNA-binding proteins.
    Yu H; Wang J; Sheng Q; Liu Q; Shyr Y
    Nucleic Acids Res; 2019 Mar; 47(5):e26. PubMed ID: 30590704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.