BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29530443)

  • 21. Presence of arsenic, mercury and vanadium in aquatic organisms of Laizhou Bay and their potential health risk.
    Liu Y; Liu G; Yuan Z; Liu H; Lam PKS
    Mar Pollut Bull; 2017 Dec; 125(1-2):334-340. PubMed ID: 28967412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contamination assessment of mercury, lead, cadmium and arsenic in surface sediments of Chabahar Bay.
    Molamohyeddin N; Ghafourian H; Sadatipour SM
    Mar Pollut Bull; 2017 Nov; 124(1):521-525. PubMed ID: 28739103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.
    Lusilao-Makiese JG; Tessier E; Amouroux D; Tutu H; Chimuka L; Weiersbye I; Cukrowska EM
    Environ Monit Assess; 2016 Jan; 188(1):47. PubMed ID: 26687090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of marine shallow-water hydrothermal venting on arsenic and mercury accumulation by seaweed Sargassum sinicola in Concepcion Bay, Gulf of California.
    Leal-Acosta ML; Shumilin E; Mirlean N; Delgadillo-Hinojosa F; Sánchez-Rodríguez I
    Environ Sci Process Impacts; 2013 Feb; 15(2):470-7. PubMed ID: 25208712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reevaluation of Minamata Bay, 25 years after the dredging of mercury-polluted sediments.
    Akito M; Shinichiro Y; Akihiro H; Michiaki K; Ikuko S; Akihide T; Hirokatsu A
    Mar Pollut Bull; 2014 Dec; 89(1-2):112-120. PubMed ID: 25455817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Submarine tailings placement by a copper mine in the deep anoxic zone of the Black Sea.
    Berkun M
    Water Res; 2005 Dec; 39(20):5005-16. PubMed ID: 16289233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining.
    Mestre NC; Rocha TL; Canals M; Cardoso C; Danovaro R; Dell'Anno A; Gambi C; Regoli F; Sanchez-Vidal A; Bebianno MJ
    Environ Pollut; 2017 Sep; 228():169-178. PubMed ID: 28531798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China.
    Fu Z; Wu F; Amarasiriwardena D; Mo C; Liu B; Zhu J; Deng Q; Liao H
    Sci Total Environ; 2010 Jul; 408(16):3403-10. PubMed ID: 20452645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Levels of environmental pollutants in flounder (Platichthys flesus L.) and cod (Gadus morhua L.) caught in the waterway of Glomma, Norway. II. Mercury and arsenic.
    Staveland G; Marthinsen I; Norheim G; Julshamn K
    Arch Environ Contam Toxicol; 1993 Feb; 24(2):187-93. PubMed ID: 8466301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impacts of gold mine waste disposal on a tropical pelagic ecosystem.
    Brewer DT; Morello EB; Griffiths S; Fry G; Heales D; Apte SC; Venables WN; Rothlisberg PC; Moeseneder C; Lansdell M; Pendrey R; Coman F; Strzelecki J; Jarolimek CV; Jung RF; Richardson AJ
    Mar Pollut Bull; 2012 Dec; 64(12):2790-806. PubMed ID: 23079701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impacts of gold mine waste disposal on deepwater fish in a pristine tropical marine system.
    Brewer DT; Milton DA; Fry GC; Dennis DM; Heales DS; Venables WN
    Mar Pollut Bull; 2007 Mar; 54(3):309-21. PubMed ID: 17173938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass.
    Liu Y; Huang L
    J Environ Manage; 2017 Jan; 186(Pt 2):175-182. PubMed ID: 27210238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental change in a modified catchment downstream of a gold mine, Solomon Islands.
    Albert S; Kvennefors C; Jacob K; Kera J; Grinham A
    Environ Pollut; 2017 Dec; 231(Pt 1):942-953. PubMed ID: 28888940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speciation of mercury and mode of transport from placer gold mine tailings.
    Slowey AJ; Rytuba JJ; Brown GE
    Environ Sci Technol; 2005 Mar; 39(6):1547-54. PubMed ID: 15819208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geo-Spatial Characterization of Soil Mercury and Arsenic at a High-Altitude Bolivian Gold Mine.
    Johnson GD; Pavilonis B; Caravanos J; Grassman J
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):259-264. PubMed ID: 29147740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China.
    Fu Z; Wu F; Mo C; Deng Q; Meng W; Giesy JP
    Sci Total Environ; 2016 Jan; 539():97-104. PubMed ID: 26356182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cu, Pb and Fe release from sulfide-containing tailings in seawater: Results from laboratory simulation of submarine tailings disposal.
    Embile RF; Walder IF; Schuh C; Donatelli JL
    Mar Pollut Bull; 2018 Dec; 137():582-592. PubMed ID: 30503471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significance of submarine groundwater discharge in the coastal fluxes of mercury in Hampyeong Bay, Yellow Sea.
    Rahman MM; Lee YG; Kim G; Lee K; Han S
    Chemosphere; 2013 Apr; 91(3):320-7. PubMed ID: 23276461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.