These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29530500)

  • 21. In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity.
    Niu K; Anijs T; Sluiter V; Homminga J; Sprengers A; Marra MA; Verdonschot N
    J Biomech; 2018 Apr; 72():134-143. PubMed ID: 29573792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional kinematics of upper limb anatomical movements in asymptomatic adults: Dominant vs. non-dominant.
    Assi A; Bakouny Z; Karam M; Massaad A; Skalli W; Ghanem I
    Hum Mov Sci; 2016 Dec; 50():10-18. PubMed ID: 27639219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of a multi-body optimization with knee kinematic models including ligament constraints.
    Gasparutto X; Sancisi N; Jacquelin E; Parenti-Castelli V; Dumas R
    J Biomech; 2015 Apr; 48(6):1141-6. PubMed ID: 25655463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of a Scaled Cadaver-Based Musculoskeletal Model With a Clinical Upper Extremity Model.
    Nagaraja VH; Bergmann JHM; Andersen MS; Thompson MS
    J Biomech Eng; 2023 Apr; 145(4):. PubMed ID: 36346198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How many trials are needed in kinematic analysis of reach-to-grasp?-A study of the drinking task in persons with stroke and non-disabled controls.
    Frykberg GE; Grip H; Alt Murphy M
    J Neuroeng Rehabil; 2021 Jun; 18(1):101. PubMed ID: 34130716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validity and Reliability of Upper Limb Kinematic Assessment Using a Markerless Motion Capture (MMC) System: A Pilot Study.
    Lam WWT; Fong KNK
    Arch Phys Med Rehabil; 2024 Apr; 105(4):673-681.e2. PubMed ID: 37981256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems.
    Perrott MA; Pizzari T; Cook J; McClelland JA
    Gait Posture; 2017 Feb; 52():57-61. PubMed ID: 27871019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of 3D upper limb motion analysis in children with obstetric brachial plexus palsy.
    Mahon J; Malone A; Kiernan D; Meldrum D
    Physiol Meas; 2017 Mar; 38(3):524-538. PubMed ID: 28140349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion.
    Lin CC; Chang CL; Lu M; Lu TW; Wu CH
    BMC Vet Res; 2018 Dec; 14(1):389. PubMed ID: 30522489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A soft tissue artefact model driven by proximal and distal joint kinematics.
    Bonci T; Camomilla V; Dumas R; Chèze L; Cappozzo A
    J Biomech; 2014 Jul; 47(10):2354-61. PubMed ID: 24818796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The inter-tester repeatability of a model for analysing elbow flexion-extension during overhead sporting movements.
    Wells DJM; Donnelly CJ; Elliott BC; Middleton KJ; Alderson JA
    Med Biol Eng Comput; 2018 Oct; 56(10):1853-1860. PubMed ID: 29611098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of KinectOne to quantify kinematics of the upper body.
    Kuster RP; Heinlein B; Bauer CM; Graf ES
    Gait Posture; 2016 Jun; 47():80-5. PubMed ID: 27264408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of acromion marker cluster calibration methods for estimating scapular kinematics during upper extremity ergometry.
    Richardson RT; Nicholson KF; Rapp EA; Johnston TE; Richards JG
    J Biomech; 2016 May; 49(7):1255-1258. PubMed ID: 26976228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
    Duprey S; Naaim A; Moissenet F; Begon M; Chèze L
    J Biomech; 2017 Sep; 62():87-94. PubMed ID: 27986326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inter-session repeatability of markerless motion capture gait kinematics.
    Kanko RM; Laende E; Selbie WS; Deluzio KJ
    J Biomech; 2021 May; 121():110422. PubMed ID: 33873117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A practical clinical kinematic model for the upper limbs.
    Noble JJ; Fry NR; Bingham CR; East RH; Shortland AP
    Proc Inst Mech Eng H; 2018 Feb; 232(2):207-212. PubMed ID: 29283018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.
    Whittaker RL; Park W; Dickerson CR
    J Biomech; 2018 Apr; 72():235-240. PubMed ID: 29523349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.