These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 29530529)

  • 1. Lamellipodial wrinkles in fish keratocytes as markers of imperfect coordination between extension and retraction during cell migration.
    Arocena M; Pérez Zerpa JM; Di Paolo A; Aguilera PA; Sotelo-Silveira J
    Biochem Biophys Res Commun; 2018 Apr; 498(3):680-685. PubMed ID: 29530529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin disassembly clock determines shape and speed of lamellipodial fragments.
    Ofer N; Mogilner A; Keren K
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20394-9. PubMed ID: 22159033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traction force microscopy in rapidly moving cells reveals separate roles for ROCK and MLCK in the mechanics of retraction.
    Morin TR; Ghassem-Zadeh SA; Lee J
    Exp Cell Res; 2014 Aug; 326(2):280-94. PubMed ID: 24786318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron tomography reveals unbranched networks of actin filaments in lamellipodia.
    Urban E; Jacob S; Nemethova M; Resch GP; Small JV
    Nat Cell Biol; 2010 May; 12(5):429-35. PubMed ID: 20418872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of Myosin induced bistability of Lamellipodial fragments.
    Hirsch S; Manhart A; Schmeiser C
    J Math Biol; 2017 Jan; 74(1-2):1-22. PubMed ID: 27109207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrin involvement in keratocyte locomotion.
    de Beus E; Jacobson K
    Cell Motil Cytoskeleton; 1998; 41(2):126-37. PubMed ID: 9786088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin and cell movement.
    Small JV; Rohlfs A; Herzog M
    Symp Soc Exp Biol; 1993; 47():57-71. PubMed ID: 8165579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic wrinkling of keratocyte lamellipodia driven by myosin-induced contractile stress.
    Lou SS; Kennard AS; Koslover EF; Gutierrez E; Groisman A; Theriot JA
    Biophys J; 2021 May; 120(9):1578-1591. PubMed ID: 33631203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotation of stress fibers as a single wheel in migrating fish keratocytes.
    Okimura C; Taniguchi A; Nonaka S; Iwadate Y
    Sci Rep; 2018 Jul; 8(1):10615. PubMed ID: 30018412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closing the loop: lamellipodia dynamics from the perspective of front propagation.
    Adler Y; Givli S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042708. PubMed ID: 24229214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy.
    Laurent VM; Kasas S; Yersin A; Schäffer TE; Catsicas S; Dietler G; Verkhovsky AB; Meister JJ
    Biophys J; 2005 Jul; 89(1):667-75. PubMed ID: 15849253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the orientation distribution of actin filaments in the lamellipodium of migrating keratocytes from electron microscopy tomography data.
    Weichsel J; Urban E; Small JV; Schwarz US
    Cytometry A; 2012 Jun; 81(6):496-507. PubMed ID: 22499256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Stress Fibers in the Shape Determination Mechanism of Fish Keratocytes.
    Nakata T; Okimura C; Mizuno T; Iwadate Y
    Biophys J; 2016 Jan; 110(2):481-492. PubMed ID: 26789770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamellipodial actin mechanically links myosin activity with adhesion-site formation.
    Giannone G; Dubin-Thaler BJ; Rossier O; Cai Y; Chaga O; Jiang G; Beaver W; Döbereiner HG; Freund Y; Borisy G; Sheetz MP
    Cell; 2007 Feb; 128(3):561-75. PubMed ID: 17289574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns.
    Csucs G; Quirin K; Danuser G
    Cell Motil Cytoskeleton; 2007 Nov; 64(11):856-67. PubMed ID: 17712861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of locomotion for simple-shaped cells.
    Lee J; Ishihara A; Theriot JA; Jacobson K
    Nature; 1993 Mar; 362(6416):167-71. PubMed ID: 8450887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.
    Yamazaki D; Fujiwara T; Suetsugu S; Takenawa T
    Genes Cells; 2005 May; 10(5):381-92. PubMed ID: 15836768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staurosporine induces lamellipodial widening in locomoting fish keratocytes by abolishing the gradient from radial extension of leading edge.
    Mizuno T; Sekiguchi Y
    Biophysics (Nagoya-shi); 2011; 7():69-75. PubMed ID: 27857594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrin alpha3beta1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1.
    Choma DP; Pumiglia K; DiPersio CM
    J Cell Sci; 2004 Aug; 117(Pt 17):3947-59. PubMed ID: 15265981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined keratocytes mimic in vivo migration and reveal volume-speed relationship.
    Labuz EC; Footer MJ; Theriot JA
    Cytoskeleton (Hoboken); 2023 Jan; 80(1-2):34-51. PubMed ID: 36576104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.