BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29530823)

  • 1. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis.
    Reinholz J; Diesler C; Schöttler S; Kokkinopoulou M; Ritz S; Landfester K; Mailänder V
    Acta Biomater; 2018 Apr; 71():432-443. PubMed ID: 29530823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells.
    Song Q; Yao L; Huang M; Hu Q; Lu Q; Wu B; Qi H; Rong Z; Jiang X; Gao X; Chen J; Chen H
    Biomaterials; 2012 Oct; 33(28):6769-82. PubMed ID: 22705199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells.
    He B; Lin P; Jia Z; Du W; Qu W; Yuan L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Aug; 34(25):6082-98. PubMed ID: 23694903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport Mechanisms of Butyrate Modified Nanoparticles: Insight into "Easy Entry, Hard Transcytosis" of Active Targeting System in Oral Administration.
    Wu L; Bai Y; Liu M; Li L; Shan W; Zhang Z; Huang Y
    Mol Pharm; 2018 Sep; 15(9):4273-4283. PubMed ID: 30102863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor mediated transcytosis in biological barrier: The influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers.
    Song X; Li R; Deng H; Li Y; Cui Y; Zhang H; Dai W; He B; Zheng Y; Wang X; Zhang Q
    Biomaterials; 2018 Oct; 180():78-90. PubMed ID: 30025247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Nanoparticles Enable Efficient Oral Delivery of Biomacromolecules via Improving Payload Stability and Regulating the Transcytosis Pathway.
    Zheng Y; Wu J; Shan W; Wu L; Zhou R; Liu M; Cui Y; Zhou M; Zhang Z; Huang Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34039-34049. PubMed ID: 30207680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics reveals time-dependent protein corona changes in the intracellular pathway.
    da Costa Marques R; Hüppe N; Speth KR; Oberländer J; Lieberwirth I; Landfester K; Mailänder V
    Acta Biomater; 2023 Dec; 172():355-368. PubMed ID: 37839632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions.
    Qin M; Zhang J; Li M; Yang D; Liu D; Song S; Fu J; Zhang H; Dai W; Wang X; Wang Y; He B; Zhang Q
    Theranostics; 2020; 10(3):1213-1229. PubMed ID: 31938061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferrin Functionization Elevates Transcytosis of Nanogranules across Epithelium by Triggering Polarity-Associated Transport Flow and Positive Cellular Feedback Loop.
    Yang D; Liu D; Deng H; Zhang J; Qin M; Yuan L; Zou X; Shao B; Li H; Dai W; Zhang H; Wang X; He B; Tang X; Zhang Q
    ACS Nano; 2019 May; 13(5):5058-5076. PubMed ID: 31034211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of "easy uptake hard transcytosis" of ligand-modified nanoparticles in oral drug delivery.
    Cui Y; Shan W; Zhou R; Liu M; Wu L; Guo Q; Zheng Y; Wu J; Huang Y
    Nanoscale; 2018 Jan; 10(3):1494-1507. PubMed ID: 29303184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Delivery and Effects of Acid Sphingomyelinase by ICAM-1-Targeted Nanocarriers in Type B Niemann-Pick Disease Mice.
    Garnacho C; Dhami R; Solomon M; Schuchman EH; Muro S
    Mol Ther; 2017 Jul; 25(7):1686-1696. PubMed ID: 28606376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.
    Sipos A; Kim KJ; Chow RH; Flodby P; Borok Z; Crandall ED
    Am J Physiol Lung Cell Mol Physiol; 2018 Aug; 315(2):L286-L300. PubMed ID: 29722567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transport pathways of polymer nanoparticles in MDCK epithelial cells.
    He B; Jia Z; Du W; Yu C; Fan Y; Dai W; Yuan L; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Jun; 34(17):4309-26. PubMed ID: 23478037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles into cells.
    Kollenda S; Kopp M; Wens J; Koch J; Schulze N; Papadopoulos C; Pöhler R; Meyer H; Epple M
    Acta Biomater; 2020 Jul; 111():406-417. PubMed ID: 32439614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier.
    Zheng Y; Xing L; Chen L; Zhou R; Wu J; Zhu X; Li L; Xiang Y; Wu R; Zhang L; Huang Y
    Biomaterials; 2020 Dec; 262():120323. PubMed ID: 32896816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology.
    Chai GH; Xu Y; Chen SQ; Cheng B; Hu FQ; You J; Du YZ; Yuan H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5929-40. PubMed ID: 26860241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking.
    Hofmann D; Tenzer S; Bannwarth MB; Messerschmidt C; Glaser SF; Schild H; Landfester K; Mailänder V
    ACS Nano; 2014 Oct; 8(10):10077-88. PubMed ID: 25244389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.
    Wang T; Wang L; Li X; Hu X; Han Y; Luo Y; Wang Z; Li Q; Aldalbahi A; Wang L; Song S; Fan C; Zhao Y; Wang M; Chen N
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18619-18625. PubMed ID: 28497682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome.
    Barroso M; Sztul ES
    J Cell Biol; 1994 Jan; 124(1-2):83-100. PubMed ID: 7905002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.