These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29531309)

  • 1. Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division.
    Kumar A; Sharma P; Gomar-Alba M; Shcheprova Z; Daulny A; Sanmartín T; Matucci I; Funaya C; Beato M; Mendoza M
    Nat Cell Biol; 2018 Apr; 20(4):432-442. PubMed ID: 29531309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear pore complex acetylation regulates mRNA export and cell cycle commitment in budding yeast.
    Gomar-Alba M; Pozharskaia V; Cichocki B; Schaal C; Kumar A; Jacquel B; Charvin G; Igual JC; Mendoza M
    EMBO J; 2022 Aug; 41(15):e110271. PubMed ID: 35735140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex.
    Makio T; Lapetina DL; Wozniak RW
    J Cell Biol; 2013 Oct; 203(2):187-96. PubMed ID: 24165935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1.
    Colombi P; Webster BM; Fröhlich F; Lusk CP
    J Cell Biol; 2013 Oct; 203(2):215-32. PubMed ID: 24165936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daughter-specific transcription factors regulate cell size control in budding yeast.
    Di Talia S; Wang H; Skotheim JM; Rosebrock AP; Futcher B; Cross FR
    PLoS Biol; 2009 Oct; 7(10):e1000221. PubMed ID: 19841732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate.
    Palumbo P; Vanoni M; Cusimano V; Busti S; Marano F; Manes C; Alberghina L
    Nat Commun; 2016 Apr; 7():11372. PubMed ID: 27094800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast.
    Huang D; Kaluarachchi S; van Dyk D; Friesen H; Sopko R; Ye W; Bastajian N; Moffat J; Sassi H; Costanzo M; Andrews BJ
    PLoS Biol; 2009 Sep; 7(9):e1000188. PubMed ID: 19823668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size.
    Schmoller KM; Turner JJ; Kõivomägi M; Skotheim JM
    Nature; 2015 Oct; 526(7572):268-72. PubMed ID: 26390151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sin3 is involved in cell size control at Start in Saccharomyces cerevisiae.
    Stephan O; Koch C
    FEBS J; 2009 Jul; 276(14):3810-24. PubMed ID: 19523118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whi5 hypo- and hyper-phosphorylation dynamics control cell-cycle entry and progression.
    Xiao J; Turner JJ; Kõivomägi M; Skotheim JM
    Curr Biol; 2024 Jun; 34(11):2434-2447.e5. PubMed ID: 38749424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry.
    Bhaduri S; Valk E; Winters MJ; Gruessner B; Loog M; Pryciak PM
    Curr Biol; 2015 Feb; 25(3):316-325. PubMed ID: 25619768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CDK Pho85 inhibits Whi7 Start repressor to promote cell cycle entry in budding yeast.
    Ros-Carrero C; Spiridon-Bodi M; Igual JC; Gomar-Alba M
    EMBO Rep; 2024 Feb; 25(2):745-769. PubMed ID: 38233717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whi7 is an unstable cell-cycle repressor of the Start transcriptional program.
    Gomar-Alba M; Méndez E; Quilis I; Bañó MC; Igual JC
    Nat Commun; 2017 Aug; 8(1):329. PubMed ID: 28839131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function.
    Cavanaugh AM; Jaspersen SL
    Annu Rev Genet; 2017 Nov; 51():361-383. PubMed ID: 28934593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulators of yeast PHO system participate in the transcriptional regulation of G1 cyclin under alkaline stress conditions.
    Nishizawa M
    Yeast; 2015 Mar; 32(3):367-78. PubMed ID: 25582350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive feedback of G1 cyclins ensures coherent cell cycle entry.
    Skotheim JM; Di Talia S; Siggia ED; Cross FR
    Nature; 2008 Jul; 454(7202):291-6. PubMed ID: 18633409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial tethering to nuclear pores promotes partitioning of extrachromosomal DNA during yeast asymmetric cell division.
    Khmelinskii A; Meurer M; Knop M; Schiebel E
    Curr Biol; 2011 Jan; 21(1):R17-8. PubMed ID: 21215928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gcn5 and Rpd3 have a limited role in the regulation of cell cycle transcripts during the G1 and S phases in Saccharomyces cerevisiae.
    Kishkevich A; Cooke SL; Harris MRA; de Bruin RAM
    Sci Rep; 2019 Jul; 9(1):10686. PubMed ID: 31337860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast.
    DeWitt JT; Chinwuba JC; Kellogg DR
    Genetics; 2023 Oct; 225(2):. PubMed ID: 37531631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth.
    Sommer RA; DeWitt JT; Tan R; Kellogg DR
    Elife; 2021 Oct; 10():. PubMed ID: 34713806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.