BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2953145)

  • 1. Induction of suppressor lymphocytes in lymphohematopoietic chimeras.
    Hess AD; Santos GW
    Year Immunol; 1985; ():51-61. PubMed ID: 2953145
    [No Abstract]   [Full Text] [Related]  

  • 2. Suppressor mechanisms active in the control of graft-v-host disease.
    Tutschka PJ
    Transplant Proc; 1987 Dec; 19(6 Suppl 7):69-74. PubMed ID: 2962355
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanisms of tolerance in marrow transplantation.
    Deeg HJ; Tsoi MS; Storb R
    Transplant Proc; 1984 Aug; 16(4):933-7. PubMed ID: 6235653
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of natural suppressor cells in bone marrow transplantation.
    Strober S; Hertel-Wulff B; Schwadron RB
    Transplant Proc; 1987 Dec; 19(6 Suppl 7):88-94. PubMed ID: 2962358
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of syngeneic graft-versus-host disease by autosuppressor mechanisms.
    Hess AD; Fischer AC; Beschorner WE
    Transplant Proc; 1989 Feb; 21(1 Pt 3):3013-5. PubMed ID: 2523169
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of protection from graft-vs-host disease in murine mixed allogeneic chimeras. I. Development of a null cell population suppressive of cell-mediated lympholysis responses and derived from the syngeneic bone marrow component.
    Sykes M; Eisenthal A; Sachs DH
    J Immunol; 1988 May; 140(9):2903-11. PubMed ID: 2966200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of the mechanism of graft-vs-host like disease in [lpr/lpr----+/+] chimera].
    Matsunaga T
    Hokkaido Igaku Zasshi; 1987 Sep; 62(5):779-89. PubMed ID: 2961673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of graft-versus-host disease: role of regulatory T lymphocytes.
    Hess AD
    Biol Blood Marrow Transplant; 2006 Jan; 12(1 Suppl 2):13-21. PubMed ID: 16399597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphohematopoietic graft-vs.-host reactions can be induced without graft-vs.-host disease in murine mixed chimeras established with a cyclophosphamide-based nonmyeloablative conditioning regimen.
    Pelot MR; Pearson DA; Swenson K; Zhao G; Sachs J; Yang YG; Sykes M
    Biol Blood Marrow Transplant; 1999; 5(3):133-43. PubMed ID: 10392959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective graft-versus-leukemia effects independent of graft-versus-host disease after T cell-depleted allogeneic bone marrow transplantation in a murine model of B cell leukemia/lymphoma. Role of cell therapy and recombinant IL-2.
    Weiss L; Lubin I; Factorowich I; Lapidot Z; Reich S; Reisner Y; Slavin S
    J Immunol; 1994 Sep; 153(6):2562-7. PubMed ID: 8077666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cytotoxic T lymphocytes in the prevention of lupus-like disease occurring in a murine model of graft-vs-host disease.
    Via CS; Sharrow SO; Shearer GM
    J Immunol; 1987 Sep; 139(6):1840-9. PubMed ID: 2957440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graft versus host disease in rats made tolerant for organ allografts.
    Morrissey NJ; Blom D; Ryan C; Fisher T; Bronsther O; Orloff M
    J Surg Res; 1997 May; 69(2):307-15. PubMed ID: 9224398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the maintenance of transplantation tolerance.
    Moran T; Dittmer J; Bennett M
    Transplant Proc; 1981 Mar; 13(1 Pt 1):611-3. PubMed ID: 6455804
    [No Abstract]   [Full Text] [Related]  

  • 14. Recovery from established graft-vs-host disease achieved by bone marrow transplantation from a third-party allogeneic donor.
    Taniguchi Y; Yoshihara S; Hoshida Y; Inoue T; Fujioka T; Ikegame K; Kawakami M; Masuda T; Aozasa K; Kawase I; Ogawa H
    Exp Hematol; 2008 Sep; 36(9):1216-25. PubMed ID: 18599183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graft-versus-leukemia and graft-versus-host reactions after donor lymphocyte infusion are initiated by host-type antigen-presenting cells and regulated by regulatory T cells in early and long-term chimeras.
    Xia G; Truitt RL; Johnson BD
    Biol Blood Marrow Transplant; 2006 Apr; 12(4):397-407. PubMed ID: 16545723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of tolerance in canine radiation chimeras.
    Deeg HJ; Atkinson K; Weiden PW; Storb R
    Transplant Proc; 1987 Dec; 19(6 Suppl 7):75-81. PubMed ID: 2962356
    [No Abstract]   [Full Text] [Related]  

  • 17. Protection from graft-versus-host disease in fully allogeneic chimeras by prior administration of T cell-depleted syngeneic bone marrow.
    Sykes M; Chester CH; Sachs DH
    Transplantation; 1988 Aug; 46(2):327-30. PubMed ID: 3043787
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of radiation field and fractionation schedule of total lymphoid irradiation (TLI) on the induction of suppressor cells and stable chimerism after bone marrow transplantation in mice.
    Waer M; Ang KK; Van der Schueren E; Vandeputte M
    J Immunol; 1984 Feb; 132(2):985-90. PubMed ID: 6228603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Donor double-negative Treg promote allogeneic mixed chimerism and tolerance.
    He KM; Ma Y; Wang S; Min WP; Zhong R; Jevnikar A; Zhang ZX
    Eur J Immunol; 2007 Dec; 37(12):3455-66. PubMed ID: 18000953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural suppressor cells.
    Maier T; Holda JH; Claman HN
    Prog Clin Biol Res; 1989; 288():235-44. PubMed ID: 2524070
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.