These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29531668)

  • 21. The ideal free distribution: a review and synthesis of the game-theoretic perspective.
    Krivan V; Cressman R; Schneider C
    Theor Popul Biol; 2008 May; 73(3):403-25. PubMed ID: 18282592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population.
    Leturque H; Rousset F
    Theor Popul Biol; 2002 Sep; 62(2):169-80. PubMed ID: 12167355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersal evolution and resource matching in a spatially and temporally variable environment.
    Aguilée R; de Villemereuil P; Guillon JM
    J Theor Biol; 2015 Apr; 370():184-96. PubMed ID: 25637766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic population growth in spatially heterogeneous environments.
    Evans SN; Ralph PL; Schreiber SJ; Sen A
    J Math Biol; 2013 Feb; 66(3):423-76. PubMed ID: 22427143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere.
    Haugen TO; Winfield IJ; Vøllestad LA; Fletcher JM; James JB; Stenseth NC
    Proc Biol Sci; 2006 Dec; 273(1604):2917-24. PubMed ID: 17015363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of a naturally fluctuating ungulate population among heterogeneous plant communities: ideal and free?
    Jones OR; Pilkington JG; Crawley MJ
    J Anim Ecol; 2006 Nov; 75(6):1387-92. PubMed ID: 17032371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predator Migration Decisions, the Ideal Free Distribution, and Predator-Prey Dynamics.
    Bernstein C; Auger P; Poggiale JC
    Am Nat; 1999 Mar; 153(3):267-281. PubMed ID: 29585973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of asexual and sexual reproduction in spatial genetic structure within and between populations of the dioecious plant Marchantia inflexa (Marchantiaceae).
    Brzyski JR; Stieha CR; Nicholas McLetchie D
    Ann Bot; 2018 Nov; 122(6):993-1003. PubMed ID: 29924293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whether ideal free or not, predatory mites distribute so as to maximize reproduction.
    van der Hammen T; Montserrat M; Sabelis MW; de Roos AM; Janssen A
    Oecologia; 2012 May; 169(1):95-104. PubMed ID: 22081260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal movement strategies for social foragers in unpredictable environments.
    Hancock PA; Milner-Gulland EJ
    Ecology; 2006 Aug; 87(8):2094-102. PubMed ID: 16937648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Putting competition strategies into ideal free distribution models: habitat selection as a tug of war.
    Flaxman SM; Reeve HK
    J Theor Biol; 2006 Dec; 243(4):587-93. PubMed ID: 16930625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intraspecific functional diversity of common species enhances community stability.
    Wood CM; McKinney ST; Loftin CS
    Ecol Evol; 2017 Mar; 7(5):1553-1560. PubMed ID: 28261464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Consumers that are not 'ideal' or 'free' can still approach the ideal free distribution using simple patch-leaving rules.
    Griffen BD
    J Anim Ecol; 2009 Sep; 78(5):919-27. PubMed ID: 19486205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.
    Zeng C; Giantsoudi D; Grassberger C; Goldberg S; Niemierko A; Paganetti H; Efstathiou JA; Trofimov A
    Med Phys; 2013 May; 40(5):051708. PubMed ID: 23635256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices.
    Bevers M; Flather CH
    Theor Popul Biol; 1999 Feb; 55(1):61-76. PubMed ID: 9925809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Empirical tests of habitat selection theory reveal that conspecific density and patch quality, but not habitat amount, drive long-distance immigration in a wild bird.
    Rushing CS; Brandt Ryder T; Valente JJ; Scott Sillett T; Marra PP
    Ecol Lett; 2021 Jun; 24(6):1167-1177. PubMed ID: 33742759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nest distribution shaping within-stream variation in Atlantic salmon juvenile abundance and competition over small spatial scales.
    Einum S; Nislow KH; Mckelvey S; Armstrong JD
    J Anim Ecol; 2008 Jan; 77(1):167-72. PubMed ID: 18005129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ideal free distribution as an evolutionarily stable strategy.
    Cantrell RS; Cosner C; DeAngelis DL; Padron V
    J Biol Dyn; 2007 Jul; 1(3):249-71. PubMed ID: 22876794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population.
    Pavlacky DC; Possingham HP; Lowe AJ; Prentis PJ; Green DJ; Goldizen AW
    J Anim Ecol; 2012 Sep; 81(5):940-52. PubMed ID: 22489927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.