BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29531803)

  • 1. Glucose-6-phosphate dehydrogenase is critical for suppression of cardiac hypertrophy by H
    Chhabra A; Mishra S; Kumar G; Gupta A; Keshri GK; Bharti B; Meena RN; Prabhakar AK; Singh DK; Bhargava K; Sharma M
    Cell Death Discov; 2018 Dec; 4():6. PubMed ID: 29531803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H
    Chhabra A; Jain N; Varshney R; Sharma M
    Cell Signal; 2023 Jul; 107():110664. PubMed ID: 37004833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Sulfide Regulates Krüppel-Like Factor 5 Transcription Activity via Specificity Protein 1 S-Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy.
    Meng G; Xiao Y; Ma Y; Tang X; Xie L; Liu J; Gu Y; Yu Y; Park CM; Xian M; Wang X; Ferro A; Wang R; Moore PK; Zhang Z; Wang H; Han Y; Ji Y
    J Am Heart Assoc; 2016 Sep; 5(9):. PubMed ID: 27638782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H
    Islam RK; Donnelly E; Donnarumma E; Hossain F; Gardner JD; Islam KN
    Biomedicines; 2023 Feb; 11(2):. PubMed ID: 36831146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen sulfide improves glucose metabolism and prevents hypertrophy in cardiomyocytes.
    Liang M; Jin S; Wu DD; Wang MJ; Zhu YC
    Nitric Oxide; 2015 Apr; 46():114-22. PubMed ID: 25524832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress.
    Barr LA; Shimizu Y; Lambert JP; Nicholson CK; Calvert JW
    Nitric Oxide; 2015 Apr; 46():145-56. PubMed ID: 25575644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.
    Rawat DK; Hecker P; Watanabe M; Chettimada S; Levy RJ; Okada T; Edwards JG; Gupte SA
    PLoS One; 2012; 7(10):e45365. PubMed ID: 23071515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth.
    Tsouko E; Khan AS; White MA; Han JJ; Shi Y; Merchant FA; Sharpe MA; Xin L; Frigo DE
    Oncogenesis; 2014 May; 3(5):e103. PubMed ID: 24861463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway.
    Huang S; Li H; Ge J
    Int J Cardiol Heart Vasc; 2015 Jun; 7():51-57. PubMed ID: 28785645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes.
    Kesherwani V; Nandi SS; Sharawat SK; Shahshahan HR; Mishra PK
    Mol Cell Biochem; 2015 Jun; 404(1-2):241-50. PubMed ID: 25763715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-6-phosphate dehydrogenase increases Ca
    Gupte R; Dhagia V; Rocic P; Ochi R; Gupte SA
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H144-H158. PubMed ID: 32442021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide attenuates cardiac injury in takotsubo cardiomyopathy by alleviating oxidative stress.
    Zhang Z; Jin S; Teng X; Duan X; Chen Y; Wu Y
    Nitric Oxide; 2017 Jul; 67():10-25. PubMed ID: 28450188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen sulfide rescues high glucose-induced migration dysfunction in HUVECs by upregulating miR-126-3p.
    Xue WL; Chen RQ; Zhang QQ; Li XH; Cao L; Li MY; Li Y; Lin G; Chen Y; Wang MJ; Zhu YC
    Am J Physiol Cell Physiol; 2020 May; 318(5):C857-C869. PubMed ID: 32186933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous hydrogen sulfide is involved in osteogenic differentiation in human periodontal ligament cells.
    Cen SD; Yu WB; Ren MM; Chen LJ; Sun CF; Ye ZL; Deng H; Hu RD
    Arch Oral Biol; 2016 Aug; 68():1-8. PubMed ID: 27035752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of hydrogen sulfide (H
    Wu Y; Guo YY; Zhang YY; Zhang Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2018 Jan; 34(1):29-34. PubMed ID: 29926655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Sulfide and Glucose Homeostasis: A Tale of Sweet and the Stink.
    Untereiner A; Wu L
    Antioxid Redox Signal; 2018 Jun; 28(16):1463-1482. PubMed ID: 28699407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.
    Pichette J; Gagnon J
    Oxid Med Cell Longev; 2016; 2016():3285074. PubMed ID: 27478532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.