These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29532620)

  • 21. The jump as a fast mode of locomotion in arboreal and terrestrial biotopes.
    Günther MM; Ishida H; Kumakura H; Nakano Y
    Z Morphol Anthropol; 1991; 78(3):341-72. PubMed ID: 1887664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frog experiment onboard space station Mir.
    Izumi-Kurotani A; Mogami Y; Okuno M; Yamashita M
    Adv Space Biol Med; 1997; 6():193-211. PubMed ID: 9048139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of substrate diameter and incline on locomotion in an arboreal frog.
    Herrel A; Perrenoud M; Decamps T; Abdala V; Manzano A; Pouydebat E
    J Exp Biol; 2013 Oct; 216(Pt 19):3599-605. PubMed ID: 24006344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward an understanding of tree frog (Hyla japonica) for predator deterrence.
    Chai L; Yin C; Kamau PM; Luo L; Yang S; Lu X; Zheng D; Wang Y
    Amino Acids; 2021 Sep; 53(9):1405-1413. PubMed ID: 34245370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Movement patterns in leiopelmatid frogs: Insights into the locomotor repertoire of basal anurans.
    Reilly S; Essner R; Wren S; Easton L; Bishop PJ
    Behav Processes; 2015 Dec; 121():43-53. PubMed ID: 26449314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anticipatory motor patterns limit muscle stretch during landing in toads.
    Azizi E; Abbott EM
    Biol Lett; 2013 Feb; 9(1):20121045. PubMed ID: 23256184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic control of extreme jump angles in the red-legged running frog,
    Richards CT; Porro LB; Collings AJ
    J Exp Biol; 2017 May; 220(Pt 10):1894-1904. PubMed ID: 28275005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Influence of Visual, Vestibular, and Hindlimb Proprioceptive Ablations on Landing Preparation in Cane Toads.
    Cox SM; Ekstrom LJ; Gillis GB
    Integr Comp Biol; 2018 Nov; 58(5):894-905. PubMed ID: 29897446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence toads may modulate landing preparation without predicting impact time.
    Cox SM; Gillis G
    Biol Open; 2017 Jan; 6(1):71-76. PubMed ID: 27895052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allometric scaling relationships of jumping performance in the striped marsh frog Limnodynastes peronii.
    Wilson RS; Franklin CE; James RS
    J Exp Biol; 2000 Jun; 203(Pt 12):1937-46. PubMed ID: 10821750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jump stabilization and landing control by wing-spreading of a locust-inspired jumper.
    Beck A; Zaitsev V; Hanan UB; Kosa G; Ayali A; Weiss A
    Bioinspir Biomim; 2017 Oct; 12(6):066006. PubMed ID: 28914235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating the maximum attachment performance of tree frogs on rough substrates.
    Langowski JKA; Rummenie A; Pieters RPM; Kovalev A; Gorb SN; van Leeuwen JL
    Bioinspir Biomim; 2019 Feb; 14(2):025001. PubMed ID: 30706849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance analysis of jump-gliding locomotion for miniature robotics.
    Vidyasagar A; Zufferey JC; Floreano D; Kovač M
    Bioinspir Biomim; 2015 Mar; 10(2):025006. PubMed ID: 25811417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale.
    Barnes WJ; Oines C; Smith JM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Nov; 192(11):1179-91. PubMed ID: 16924504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force-transmitting structures in the digital pads of the tree frog Hyla cinerea: a functional interpretation.
    Langowski JKA; Schipper H; Blij A; van den Berg FT; Gussekloo SWS; van Leeuwen JL
    J Anat; 2018 Oct; 233(4):478-495. PubMed ID: 30123974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central angiotensin II stimulates cutaneous water intake behavior via an angiotensin II type-1 receptor pathway in the Japanese tree frog Hyla japonica.
    Maejima S; Konno N; Matsuda K; Uchiyama M
    Horm Behav; 2010 Aug; 58(3):457-64. PubMed ID: 20483358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal ganglion cell topography and spatial resolution estimation in the Japanese tree frog Hyla japonica (Günther, 1859).
    Pushchin I
    J Anat; 2019 Dec; 235(6):1114-1124. PubMed ID: 31418464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pre-landing wrist muscle activity in hopping toads.
    Ekstrom LJ; Gillis GB
    J Exp Biol; 2015 Aug; 218(Pt 15):2410-5. PubMed ID: 26026036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cricket frogs maintain body hydration and temperature near levels allowing maximum jump performance.
    Walvoord ME
    Physiol Biochem Zool; 2003; 76(6):825-35. PubMed ID: 14988797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.