These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 29532746)
1. Investigation of mechanisms of mesenchymal stem cells for treatment of diabetic nephropathy via construction of a miRNA-TF-mRNA network. Yang H; Zhang X; Xin G Ren Fail; 2018 Nov; 40(1):136-145. PubMed ID: 29532746 [TBL] [Abstract][Full Text] [Related]
2. Crucial genes associated with diabetic nephropathy explored by microarray analysis. Wang Z; Wang Z; Zhou Z; Ren Y BMC Nephrol; 2016 Sep; 17(1):128. PubMed ID: 27613243 [TBL] [Abstract][Full Text] [Related]
3. Construction of a TF-miRNA-mRNA Regulatory Network for Diabetic Nephropathy. Dong F; Zheng L; Yang G Arch Esp Urol; 2024 Jan; 77(1):104-112. PubMed ID: 38374020 [TBL] [Abstract][Full Text] [Related]
4. Identification of biological targets of therapeutic intervention for diabetic nephropathy with bioinformatics approach. Wu T; Li Q; Wu T; Liu HY Exp Clin Endocrinol Diabetes; 2014 Nov; 122(10):587-91. PubMed ID: 25003364 [TBL] [Abstract][Full Text] [Related]
5. Bioinformatics Analysis of the Mechanisms of Diabetic Nephropathy Guo M; Dai Y; Jiang L; Gao J Front Endocrinol (Lausanne); 2022; 13():934022. PubMed ID: 35909518 [TBL] [Abstract][Full Text] [Related]
6. Identification of key genes and transcription factors in aging mesenchymal stem cells by DNA microarray data. Wu Y; Yang J; Ai Z; Yu M; Li J; Li S Gene; 2019 Apr; 692():79-87. PubMed ID: 30641220 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm. Gholaminejad A; Fathalipour M; Roointan A BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202 [TBL] [Abstract][Full Text] [Related]
8. Revealing the underlying mechanism of diabetic nephropathy viewed by microarray analysis. Qu W; Han C; Li M; Zhang J; Li L Exp Clin Endocrinol Diabetes; 2015 Jun; 123(6):353-9. PubMed ID: 25918880 [TBL] [Abstract][Full Text] [Related]
9. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. Hu Y; Yu Y; Dong H; Jiang W PeerJ; 2023; 11():e15437. PubMed ID: 37250717 [TBL] [Abstract][Full Text] [Related]
10. Key Genes Involved in Diabetic Nephropathy Investigated by Microarray Analysis. Liu X; Li X J Comput Biol; 2019 Dec; 26(12):1438-1447. PubMed ID: 31356112 [TBL] [Abstract][Full Text] [Related]
11. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays. Shen H; Wang W; Ni B; Zou Q; Lu H; Wang Z Int J Mol Med; 2018 Jul; 42(1):21-30. PubMed ID: 29620143 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134 [TBL] [Abstract][Full Text] [Related]
13. Integrated network analysis to explore the key genes regulated by parathyroid hormone receptor 1 in osteosarcoma. Guan D; Tian H World J Surg Oncol; 2017 Sep; 15(1):177. PubMed ID: 28934958 [TBL] [Abstract][Full Text] [Related]
14. Identification of key genes and biological regulatory mechanisms in diabetic nephropathy: Meta-analysis of gene expression datasets. Hojjati F; Roointan A; Gholaminejad A; Eshraghi Y; Gheisari Y Nefrologia (Engl Ed); 2023; 43(5):575-586. PubMed ID: 36681521 [TBL] [Abstract][Full Text] [Related]
15. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches. Cao H; Rao X; Jia J; Yan T; Li D Hereditas; 2022 Sep; 159(1):36. PubMed ID: 36154667 [TBL] [Abstract][Full Text] [Related]
16. Integrated miRNA-mRNA network revealing the key molecular characteristics of ossification of the posterior longitudinal ligament. Xu G; Liu C; Liang T; Qin Z; Yu CJ; Zhang Z; Jiang J; Chen J; Zhan X Medicine (Baltimore); 2020 May; 99(21):e20268. PubMed ID: 32481304 [TBL] [Abstract][Full Text] [Related]
17. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Yang F; Cui Z; Deng H; Wang Y; Chen Y; Li H; Yuan L Medicine (Baltimore); 2019 Jul; 98(27):e16225. PubMed ID: 31277135 [TBL] [Abstract][Full Text] [Related]
18. Identification of co-expressed central genes and transcription factors in acute myocardial infarction and diabetic nephropathy. Li B; Zhao X; Xie W; Hong Z; Cao Y; Zhang Y; Ding Y BMC Med Genomics; 2024 May; 17(1):134. PubMed ID: 38764052 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the Mechanism of Complement System in Diabetic Nephropathy via Bioinformatics Analysis. Xu B; Wang L; Zhan H; Zhao L; Wang Y; Shen M; Xu K; Li L; Luo X; Zhou S; Tang A; Liu G; Song L; Li Y J Diabetes Res; 2021; 2021():5546199. PubMed ID: 34124269 [TBL] [Abstract][Full Text] [Related]
20. Screening for genes, miRNAs and transcription factors of adipogenic differentiation and dedifferentiation of mesenchymal stem cells. Ou-Yang Y; Dai MM J Orthop Surg Res; 2023 Jan; 18(1):46. PubMed ID: 36647068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]