These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29532911)

  • 21. Pore-scale simulations of concentration tails in heterogeneous porous media.
    Di Palma PR; Parmigiani A; Huber C; Guyennon N; Viotti P
    J Contam Hydrol; 2017 Oct; 205():47-56. PubMed ID: 28882389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.
    Wang L; Cardenas MB
    J Contam Hydrol; 2015 Aug; 179():47-54. PubMed ID: 26042625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An upscaled approach for transport in media with extended tailing due to back-diffusion using analytical and numerical solutions of the advection dispersion equation.
    Parker JC; Kim U
    J Contam Hydrol; 2015 Nov; 182():157-72. PubMed ID: 26398901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils.
    Rubin S; Dror I; Berkowitz B
    J Contam Hydrol; 2012 May; 132():28-36. PubMed ID: 22445833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media.
    Levy M; Berkowitz B
    J Contam Hydrol; 2003 Jul; 64(3-4):203-26. PubMed ID: 12814881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity.
    Sanz-Prat A; Lu C; Amos RT; Finkel M; Blowes DW; Cirpka OA
    J Contam Hydrol; 2016 Sep; 192():35-49. PubMed ID: 27343827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical modelling of fringe and core biodegradation in groundwater plumes.
    Gutierrez-Neri M; Ham PA; Schotting RJ; Lerner DN
    J Contam Hydrol; 2009 Jun; 107(1-2):1-9. PubMed ID: 19386379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local Equilibrium and Retardation Revisited.
    Hansen SK; Vesselinov VV
    Ground Water; 2018 Jan; 56(1):109-117. PubMed ID: 28722824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experiment and Simulation of Non-Reactive Solute Transport in Porous Media.
    Li Y; Bian J; Wang Q; Li T
    Ground Water; 2022 May; 60(3):330-343. PubMed ID: 34850387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plume detachment and recession times in fractured rock.
    West MR; Kueper BH
    Ground Water; 2010; 48(3):416-26. PubMed ID: 20070379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating reaction rate coefficients within a travel-time modeling framework.
    Gong R; Lu C; Wu WM; Cheng H; Gu B; Watson D; Jardine PM; Brooks SC; Criddle CS; Kitanidis PK; Luo J
    Ground Water; 2011; 49(2):209-18. PubMed ID: 20132330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis.
    Damgaard I; Bjerg PL; Bælum J; Scheutz C; Hunkeler D; Jacobsen CS; Tuxen N; Broholm MM
    J Contam Hydrol; 2013 Mar; 146():37-50. PubMed ID: 23357226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the roles of advection and degradation in chlorinated solvent back-diffusion from multi-layer aquitards: A novel analytical approach.
    Ding XH; Feng SJ
    J Hazard Mater; 2022 Sep; 437():129410. PubMed ID: 35897173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical Role of the Immobile Zone in Non-Fickian Two-Phase Transport: A New Paradigm.
    Karadimitriou NK; Joekar-Niasar V; Babaei M; Shore CA
    Environ Sci Technol; 2016 Apr; 50(8):4384-92. PubMed ID: 27010555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.
    Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2015 Nov; 182():231-43. PubMed ID: 26433603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.
    Piscopo AN; Neupauer RM; Kasprzyk JR
    J Contam Hydrol; 2016 Jul; 190():29-43. PubMed ID: 27153361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales.
    Weatherill J; Krause S; Voyce K; Drijfhout F; Levy A; Cassidy N
    J Contam Hydrol; 2014 Mar; 158():38-54. PubMed ID: 24424265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.