BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29532931)

  • 1. A novel chloroplast gene reported for flagellate plants.
    Song M; Kuo LY; Huiet L; Pryer KM; Rothfels CJ; Li FW
    Am J Bot; 2018 Jan; 105(1):117-121. PubMed ID: 29532931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete plastid genome sequence of the enigmatic moss, Takakia lepidozioides (Takakiopsida, Bryophyta): evolutionary perspectives on the largest collection of genes in mosses and the intensive RNA editing.
    Sadamitsu A; Inoue Y; Sakakibara K; Tsubota H; Yamaguchi T; Deguchi H; Nishiyama T; Shimamura M
    Plant Mol Biol; 2021 Nov; 107(4-5):431-449. PubMed ID: 34817767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris.
    Wolf PG; Rowe CA; Hasebe M
    Gene; 2004 Sep; 339():89-97. PubMed ID: 15363849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in frequency of plastid RNA editing within Adiantum implies rapid evolution in fern plastomes.
    Fauskee BD; Sigel EM; Pryer KM; Grusz AL
    Am J Bot; 2021 May; 108(5):820-827. PubMed ID: 33969475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants.
    Guo W; Grewe F; Mower JP
    PLoS One; 2015; 10(1):e0117075. PubMed ID: 25568947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights.
    Ruiz-Ruano FJ; Navarro-Domínguez B; Camacho JPM; Garrido-Ramos MA
    J Plant Res; 2019 Jan; 132(1):3-17. PubMed ID: 30552526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii.
    Funk HT; Berg S; Krupinska K; Maier UG; Krause K
    BMC Plant Biol; 2007 Aug; 7():45. PubMed ID: 17714582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers.
    Gao L; Zhou Y; Wang ZW; Su YJ; Wang T
    BMC Plant Biol; 2011 Apr; 11():64. PubMed ID: 21486489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing.
    Maier RM; Neckermann K; Igloi GL; Kössel H
    J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys.
    Ravin NV; Gruzdev EV; Beletsky AV; Mazur AM; Prokhortchouk EB; Filyushin MA; Kochieva EZ; Kadnikov VV; Mardanov AV; Skryabin KG
    BMC Plant Biol; 2016 Nov; 16(Suppl 3):238. PubMed ID: 28105941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of chloroplast genes and genomes in ferns.
    Wolf PG; Der JP; Duffy AM; Davidson JB; Grusz AL; Pryer KM
    Plant Mol Biol; 2011 Jul; 76(3-5):251-61. PubMed ID: 20976559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA editing sites exist in protein-coding genes in the chloroplast genome of Cycas taitungensis.
    Chen H; Deng L; Jiang Y; Lu P; Yu J
    J Integr Plant Biol; 2011 Dec; 53(12):961-70. PubMed ID: 22044752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions.
    Logacheva MD; Krinitsina AA; Belenikin MS; Khafizov K; Konorov EA; Kuptsov SV; Speranskaya AS
    BMC Plant Biol; 2017 Dec; 17(Suppl 2):255. PubMed ID: 29297348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.
    Kahlau S; Aspinall S; Gray JC; Bock R
    J Mol Evol; 2006 Aug; 63(2):194-207. PubMed ID: 16830097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of selection on matK following an ancient loss of its flanking intron.
    Duffy AM; Kelchner SA; Wolf PG
    Gene; 2009 Jun; 438(1-2):17-25. PubMed ID: 19236909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plastid genome of the hornwort Nothoceros aenigmaticus (Dendrocerotaceae): phylogenetic signal in inverted repeat expansion, pseudogenization, and intron gain.
    Villarreal JC; Forrest LL; Wickett N; Goffinet B
    Am J Bot; 2013 Mar; 100(3):467-77. PubMed ID: 23416362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastome sequences of an ancient fern lineage reveal remarkable changes in gene content and architecture.
    Labiak PH; Karol KG
    Am J Bot; 2017 Jul; 104(7):1008-1018. PubMed ID: 28754764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift?
    Jobson RW; Qiu YL
    Biol Direct; 2008 Oct; 3():43. PubMed ID: 18939975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms.
    Knox EB
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):11097-102. PubMed ID: 25024223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.