These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29532933)

  • 1. Intraspecific and interspecific adaptive latitudinal cline in Brassicaceae seed oil traits.
    Sanyal A; Lenoir J; O'Neill C; Dubois F; Decocq G
    Am J Bot; 2018 Jan; 105(1):85-94. PubMed ID: 29532933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils.
    Sanyal A; Decocq G
    BMC Evol Biol; 2016 Sep; 16(1):187. PubMed ID: 27613109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palm seed and fruit lipid composition: phylogenetic and ecological perspectives.
    Guerin C; Serret J; Montúfar R; Vaissayre V; Bastos-Siqueira A; Durand-Gasselin T; Tregear J; Morcillo F; Dussert S
    Ann Bot; 2020 Jan; 125(1):157-172. PubMed ID: 31665224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Evolution of Seed Oils in Plants: Accounting for the Biogeographic Distribution of Saturated and Unsaturated Fatty Acids in Seed Oils.
    Linder CR
    Am Nat; 2000 Oct; 156(4):442-458. PubMed ID: 29592140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myxospermy Evolution in Brassicaceae: A Highly Complex and Diverse Trait with
    Viudes S; Dunand C; Burlat V
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants.
    Cai G; Fan C; Liu S; Yang Q; Liu D; Wu J; Li J; Zhou Y; Guo L; Wang X
    New Phytol; 2020 May; 226(4):1055-1073. PubMed ID: 32176333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation.
    Li Y; Beisson F; Pollard M; Ohlrogge J
    Phytochemistry; 2006 May; 67(9):904-15. PubMed ID: 16600316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity and constraints on fatty acid composition in the phospholipids and triacylglycerols of Arabidopsis accessions grown at different temperatures.
    Sanyal A; Linder CR
    BMC Plant Biol; 2013 Apr; 13():63. PubMed ID: 23594395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation for seed oil composition in Arabidopsis thaliana.
    O'Neill CM; Gill S; Hobbs D; Morgan C; Bancroft I
    Phytochemistry; 2003 Nov; 64(6):1077-90. PubMed ID: 14568074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition.
    Branham SE; Wright SJ; Reba A; Linder CR
    J Hered; 2016 May; 107(3):248-56. PubMed ID: 26704140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants.
    Branham SE; Wright SJ; Reba A; Morrison GD; Linder CR
    J Hered; 2016 May; 107(3):257-65. PubMed ID: 26865732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brassicaceae seed oil identified as illuminant in Nilotic shells from a first millennium AD Coptic church in Bawit, Egypt.
    Romanus K; Van Neer W; Marinova E; Verbeke K; Luypaerts A; Accardo S; Hermans I; Jacobs P; De Vos D; Waelkens M
    Anal Bioanal Chem; 2008 Jan; 390(2):783-93. PubMed ID: 17985118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.
    Zou J; Katavic V; Giblin EM; Barton DL; MacKenzie SL; Keller WA; Hu X; Taylor DC
    Plant Cell; 1997 Jun; 9(6):909-23. PubMed ID: 9212466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic mass spectrometry in archaeology: evidence for Brassicaceae seed oil in Egyptian ceramic lamps.
    Colombini MP; Modugno F; Ribechini E
    J Mass Spectrom; 2005 Jul; 40(7):890-8. PubMed ID: 15934034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina.
    Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X
    Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R
    PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).
    Willis CG; Hall JC; Rubio de Casas R; Wang TY; Donohue K
    Ann Bot; 2014 Dec; 114(8):1675-86. PubMed ID: 25342656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential.
    Morris JB; Tonnis B; Wang ML
    J Diet Suppl; 2014 Sep; 11(3):294-303. PubMed ID: 25054688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.