These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29532954)
1. Identification of putative cytochrome P450 monooxygenase genes from the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), and their response to insecticides. Liu S; Zhang YX; Wang WL; Cao Y; Li S; Zhang BX; Li SG Arch Insect Biochem Physiol; 2018 May; 98(1):e21455. PubMed ID: 29532954 [TBL] [Abstract][Full Text] [Related]
2. Biochemical and genetic mechanisms in Pieris rapae (Lepidoptera: Pieridae) resistance under emamectin benzoate stress. Aioub AAA; Moustafa MAM; Hashem AS; Sayed S; Hamada HM; Zhang Q; Abdel-Wahab SIZ Chemosphere; 2024 Aug; 362():142887. PubMed ID: 39025308 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterisation of seventeen glutathione S-transferase genes from the cabbage white butterfly Pieris rapae. Liu S; Zhang YX; Wang WL; Zhang BX; Li SG Pestic Biochem Physiol; 2017 Nov; 143():102-110. PubMed ID: 29183577 [TBL] [Abstract][Full Text] [Related]
4. Molecular Characterization and Expression Analysis of Two Acetylcholinesterase Genes From the Small White Butterfly Pieris rapae (Lepidoptera: Pieridae). Jiang XC; Jiang XY; Liu S J Insect Sci; 2018 Sep; 18(5):. PubMed ID: 30184214 [TBL] [Abstract][Full Text] [Related]
5. Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole. Wang X; Chen Y; Gong C; Yao X; Jiang C; Yang Q Pest Manag Sci; 2018 Aug; 74(8):1938-1952. PubMed ID: 29488686 [TBL] [Abstract][Full Text] [Related]
6. Effect of milk thistle, Silybium marianum, extract on toxicity, development, nutrition, and enzyme activities of the small white butterfly, Pieris rapae. Hasheminia SM; Sendi JJ; Jahromi KT; Moharramipour S J Insect Sci; 2013; 13():146. PubMed ID: 24783941 [TBL] [Abstract][Full Text] [Related]
7. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Hu Z; Lin Q; Chen H; Li Z; Yin F; Feng X Bull Entomol Res; 2014 Dec; 104(6):716-23. PubMed ID: 25208571 [TBL] [Abstract][Full Text] [Related]
8. De Novo Assembly and Developmental Transcriptome Analysis of the Small White Butterfly Pieris rapae. Qi L; Fang Q; Zhao L; Xia H; Zhou Y; Xiao J; Li K; Ye G PLoS One; 2016; 11(7):e0159258. PubMed ID: 27428371 [TBL] [Abstract][Full Text] [Related]
9. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Hu B; Zhang SH; Ren MM; Tian XR; Wei Q; Mburu DK; Su JY Insect Sci; 2019 Apr; 26(2):199-216. PubMed ID: 28881445 [TBL] [Abstract][Full Text] [Related]
10. Identification and Expression Profiles of 14 Odorant-Binding Protein Genes From Pieris rapae (Lepidoptera: Pieridae). Li MY; Jiang XY; Qi YZ; Huang YJ; Li SG; Liu S J Insect Sci; 2020 Aug; 20(5):. PubMed ID: 32889524 [TBL] [Abstract][Full Text] [Related]
11. A thioredoxin peroxidase protects Pieris rapae from oxidative stress induced by chlorantraniliprole exposure. Zhao L; Cao Y; Wang DD; Chen N; Li SG; Liu S; Li MY Arch Insect Biochem Physiol; 2022 Dec; 111(4):e21964. PubMed ID: 36050844 [TBL] [Abstract][Full Text] [Related]
12. Silencing of Cytochrome P450 in Spodoptera frugiperda (Lepidoptera: Noctuidae) by RNA Interference Enhances Susceptibility to Chlorantraniliprole. Bai-Zhong Z; Xu S; Cong-Ai Z; Liu-Yang L; Ya-She L; Xing G; Dong-Mei C; Zhang P; MIng-Wang S; Xi-Ling C J Insect Sci; 2020 May; 20(3):. PubMed ID: 32484869 [TBL] [Abstract][Full Text] [Related]
13. Induction of Cytochrome P450 Activity by the Interaction of Chlorantraniliprole and Sinigrin in the Spodoptera exigua (Lepidoptera: Noctuidae). Wang XG; Gao XW; Liang P; Shi XY; Song DL Environ Entomol; 2016 Apr; 45(2):500-7. PubMed ID: 26916517 [TBL] [Abstract][Full Text] [Related]
14. Expression profile analysis of silkworm P450 family genes after phoxim induction. Li F; Ni M; Zhang H; Wang B; Xu K; Tian J; Hu J; Shen W; Li B Pestic Biochem Physiol; 2015 Jul; 122():103-9. PubMed ID: 26071814 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of the different metabolome responses between Plutella xylostella and Pieris rapae treated with the diamide insecticides. Wang D; Lv W; Yuan Y; Zhang T; Teng H; Losey JE; Chang X Ecotoxicol Environ Saf; 2020 Oct; 203():111033. PubMed ID: 32888611 [TBL] [Abstract][Full Text] [Related]
16. Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga. Chen C; Shan T; Liu Y; Shi X; Gao X Pest Manag Sci; 2019 Apr; 75(4):1006-1013. PubMed ID: 30221445 [TBL] [Abstract][Full Text] [Related]
17. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. David JP; Boyer S; Mesneau A; Ball A; Ranson H; Dauphin-Villemant C Insect Biochem Mol Biol; 2006 May; 36(5):410-20. PubMed ID: 16651188 [TBL] [Abstract][Full Text] [Related]
18. RNA interference of cytochrome P450 CYP6F subfamily genes affects susceptibility to different insecticides in Locusta migratoria. Guo Y; Wu H; Zhang X; Ma E; Guo Y; Zhu KY; Zhang J Pest Manag Sci; 2016 Nov; 72(11):2154-2165. PubMed ID: 26853074 [TBL] [Abstract][Full Text] [Related]
19. Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. Wu S; Wang F; Huang J; Fang Q; Shen Z; Ye G Dev Comp Immunol; 2013 Sep; 41(1):1-10. PubMed ID: 23603125 [TBL] [Abstract][Full Text] [Related]
20. CHARACTERIZATION AND EXPRESSION PROFILES OF FIVE POSSIBLE CYTOCHROME P450 GENES FROM Liposcelis entomophila (ENDERLEIN) (PSOCOPTERA: LIPOSCELIDIDAE). Li T; Liu Y; Wei DD; Shang F; Smagghe G; Dou W; Wang JJ; Smagghe G Arch Insect Biochem Physiol; 2016 Aug; 92(4):259-73. PubMed ID: 27087161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]