These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29533128)

  • 1. O11 is multi-functional regulator in maize endosperm.
    Feng F; Song R
    Plant Signal Behav; 2018 Apr; 13(4):e1451709. PubMed ID: 29533128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism.
    Feng F; Qi W; Lv Y; Yan S; Xu L; Yang W; Yuan Y; Chen Y; Zhao H; Song R
    Plant Cell; 2018 Feb; 30(2):375-396. PubMed ID: 29436476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize endosperm development.
    Dai D; Ma Z; Song R
    J Integr Plant Biol; 2021 Apr; 63(4):613-627. PubMed ID: 33448626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development.
    Grimault A; Gendrot G; Chamot S; Widiez T; Rabillé H; Gérentes MF; Creff A; Thévenin J; Dubreucq B; Ingram GC; Rogowsky PM; Depège-Fargeix N
    Plant J; 2015 Nov; 84(3):574-86. PubMed ID: 26361885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds.
    Fourquin C; Beauzamy L; Chamot S; Creff A; Goodrich J; Boudaoud A; Ingram G
    Development; 2016 Sep; 143(18):3300-5. PubMed ID: 27287798
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Yang YZ; Ding S; Wang Y; Li CL; Shen Y; Meeley R; McCarty DR; Tan BC
    Plant Physiol; 2017 Jun; 174(2):1127-1138. PubMed ID: 28408540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZmSMR4, a novel cyclin-dependent kinase inhibitor (CKI) gene in maize (Zea mays L.), functions as a key player in plant growth, development and tolerance to abiotic stress.
    Li F; Wang L; Zhang Z; Li T; Feng J; Xu S; Zhang R; Guo D; Xue J
    Plant Sci; 2019 Mar; 280():120-131. PubMed ID: 30823990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize.
    Gillmor CS; Settles AM; Lukowitz W
    Methods Mol Biol; 2020; 2122():3-14. PubMed ID: 31975291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1.
    Denay G; Creff A; Moussu S; Wagnon P; Thévenin J; Gérentes MF; Chambrier P; Dubreucq B; Ingram G
    Development; 2014 Mar; 141(6):1222-7. PubMed ID: 24553285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal responses during early embryogenesis in maize.
    Chen J; Lausser A; Dresselhaus T
    Biochem Soc Trans; 2014 Apr; 42(2):325-31. PubMed ID: 24646239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize.
    Gallie DR; Young TE
    Mol Genet Genomics; 2004 Apr; 271(3):267-81. PubMed ID: 14760521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds.
    Song W; Zhu J; Zhao H; Li Y; Liu J; Zhang X; Huang L; Lai J
    J Integr Plant Biol; 2019 Jun; 61(6):706-727. PubMed ID: 30506638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling in Early Maize Kernel Development.
    Doll NM; Depège-Fargeix N; Rogowsky PM; Widiez T
    Mol Plant; 2017 Mar; 10(3):375-388. PubMed ID: 28267956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atypical response regulators expressed in the maize endosperm transfer cells link canonical two component systems and seed biology.
    Muñiz LM; Royo J; Gómez E; Baudot G; Paul W; Hueros G
    BMC Plant Biol; 2010 May; 10():84. PubMed ID: 20459670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm.
    Dong Q; Wang F; Kong J; Xu Q; Li T; Chen L; Chen H; Jiang H; Li C; Cheng B
    Sci Rep; 2019 Mar; 9(1):3253. PubMed ID: 30824731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved co-functional network between maize and Arabidopsis aid in the identification of seed defective genes in maize.
    Zhang X; Cui Y; Wang J; Huang Y; Qi Y
    Genes Genomics; 2021 May; 43(5):433-446. PubMed ID: 33651300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosperm and Nucellus Develop Antagonistically in Arabidopsis Seeds.
    Xu W; Fiume E; Coen O; Pechoux C; Lepiniec L; Magnani E
    Plant Cell; 2016 Jun; 28(6):1343-60. PubMed ID: 27233529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may).
    Wang P; Xia H; Zhang Y; Zhao S; Zhao C; Hou L; Li C; Li A; Ma C; Wang X
    BMC Genomics; 2015 Jan; 16(1):21. PubMed ID: 25612809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize opaque mutants are no longer so opaque.
    Zhang S; Zhan J; Yadegari R
    Plant Reprod; 2018 Sep; 31(3):319-326. PubMed ID: 29978299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress.
    Augustine RC; York SL; Rytz TC; Vierstra RD
    Plant Physiol; 2016 Jul; 171(3):2191-210. PubMed ID: 27208252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.