BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29533156)

  • 1. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults.
    Chaikhot D; Taylor MJD; Hettinga FJ
    Eur J Sport Sci; 2018 Jun; 18(5):650-658. PubMed ID: 29533156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men.
    Chaikhot D; Reed K; Petroongrad W; Athanasiou F; van Kooten D; Hettinga FJ
    J Strength Cond Res; 2020 Aug; 34(8):2267-2275. PubMed ID: 30024482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiated perceived exertion and self-regulated wheelchair exercise.
    Paulson TA; Bishop NC; Eston RG; Goosey-Tolfrey VL
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheelchair propulsion: effects of experience and push strategy on efficiency and perceived exertion.
    Lenton JP; Fowler NE; van der Woude L; Goosey-Tolfrey VL
    Appl Physiol Nutr Metab; 2008 Oct; 33(5):870-9. PubMed ID: 18923561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion.
    Goosey-Tolfrey VL; Kirk JH
    Eur J Appl Physiol; 2003 Sep; 90(1-2):154-8. PubMed ID: 14504947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice.
    Goosey-Tolfrey VL; West M; Lenton JP; Tolfrey K
    Int J Sports Med; 2011 Feb; 32(2):126-31. PubMed ID: 21165800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C; Grangeon M; Ananos L; Brosseau R; Gagnon DH
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheelchair users' perceived exertion during typical mobility activities.
    Qi L; Ferguson-Pell M; Salimi Z; Haennel R; Ramadi A
    Spinal Cord; 2015 Sep; 53(9):687-91. PubMed ID: 25777329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of wheelchair propulsion and effects of strategy.
    Lenton JP; Fowler N; van der Woude L; Goosey-Tolfrey VL
    Int J Sports Med; 2008 May; 29(5):384-9. PubMed ID: 17879885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions.
    de Klerk R; Velhorst V; Veeger DHEJ; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2020 Oct; 17(1):136. PubMed ID: 33069257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceived exertion responses to wheelchair propulsion differ between novice able-bodied and trained wheelchair sportspeople.
    Hutchinson MJ; Kilgallon JW; Leicht CA; Goosey-Tolfrey VL
    J Sci Med Sport; 2020 Apr; 23(4):403-407. PubMed ID: 31706827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand-rim forces and gross mechanical efficiency at various frequencies of wheelchair propulsion.
    Lenton JP; van der Woude LH; Fowler NE; Nicholson G; Tolfrey K; Goosey-Tolfrey VL
    Int J Sports Med; 2013 Feb; 34(2):158-64. PubMed ID: 22918717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.
    de Groot S; Vegter RJ; van der Woude LH
    Med Eng Phys; 2013 Oct; 35(10):1476-82. PubMed ID: 23642660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
    van Drongelen S; Arnet U; Veeger DH; van der Woude LH
    Med Eng Phys; 2013 Mar; 35(3):283-8. PubMed ID: 22910103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manual wheelchair pushrim dynamics in people with multiple sclerosis.
    Fay BT; Boninger ML; Fitzgerald SG; Souza AL; Cooper RA; Koontz AM
    Arch Phys Med Rehabil; 2004 Jun; 85(6):935-42. PubMed ID: 15179647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.