These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29533186)

  • 21. Automated FES for Upper Limb Rehabilitation Following Stroke and Spinal Cord Injury.
    Hodkin EF; Lei Y; Humby J; Glover IS; Choudhury S; Kumar H; Perez MA; Rodgers H; Jackson A
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1067-1074. PubMed ID: 29752242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury.
    Samejima S; Henderson R; Pradarelli J; Mondello SE; Moritz CT
    Exp Neurol; 2022 Nov; 357():114178. PubMed ID: 35878817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cord associative plasticity improves forelimb sensorimotor function after cervical injury.
    Pal A; Park H; Ramamurthy A; Asan AS; Bethea T; Johnkutty M; Carmel JB
    Brain; 2022 Dec; 145(12):4531-4544. PubMed ID: 36063483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasticity of the spinal neural circuitry after injury.
    Edgerton VR; Tillakaratne NJ; Bigbee AJ; de Leon RD; Roy RR
    Annu Rev Neurosci; 2004; 27():145-67. PubMed ID: 15217329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.
    Fenrich KK; May Z; Torres-Espín A; Forero J; Bennett DJ; Fouad K
    Behav Brain Res; 2016 Feb; 299():59-71. PubMed ID: 26611563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different effects of running wheel exercise and skilled reaching training on corticofugal tract plasticity in hypertensive rats with cortical infarctions.
    Zhang C; Zou Y; Li K; Li C; Jiang Y; Sun J; Sun R; Wen H
    Behav Brain Res; 2018 Jan; 336():166-172. PubMed ID: 28882693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.
    Okabe N; Himi N; Maruyama-Nakamura E; Hayashi N; Narita K; Miyamoto O
    PLoS One; 2017; 12(11):e0187413. PubMed ID: 29095902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of brain plasticity and recovery of locomotive function after lumbar spinal cord stimulation in combination with gait training with partial weight support in rats with cerebral ischemia.
    Choi YH; Lee SU
    Brain Res; 2017 May; 1662():31-38. PubMed ID: 28237545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.
    Khodaparast N; Hays SA; Sloan AM; Fayyaz T; Hulsey DR; Rennaker RL; Kilgard MP
    Neurorehabil Neural Repair; 2014 Sep; 28(7):698-706. PubMed ID: 24553102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats.
    Hays SA; Ruiz A; Bethea T; Khodaparast N; Carmel JB; Rennaker RL; Kilgard MP
    Neurobiol Aging; 2016 Jul; 43():111-8. PubMed ID: 27255820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New perspectives on improving upper extremity function after spinal cord injury.
    Beekhuizen KS
    J Neurol Phys Ther; 2005 Sep; 29(3):157-62. PubMed ID: 16398948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury.
    Hollis ER; Ishiko N; Yu T; Lu CC; Haimovich A; Tolentino K; Richman A; Tury A; Wang SH; Pessian M; Jo E; Kolodkin A; Zou Y
    Nat Neurosci; 2016 May; 19(5):697-705. PubMed ID: 27065364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.
    Bazley FA; Maybhate A; Tan CS; Thakor NV; Kerr C; All AH
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):953-64. PubMed ID: 24801738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing rehabilitation and functional recovery after brain and spinal cord trauma with electrical neuromodulation.
    Hofer AS; Schwab ME
    Curr Opin Neurol; 2019 Dec; 32(6):828-835. PubMed ID: 31567546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term rehabilitation reduces task error variability in cervical spinal cord contused rats.
    Baylo-Marín O; Flores Á; García-Alías G
    Exp Neurol; 2022 Feb; 348():113928. PubMed ID: 34813841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss and spontaneous recovery of forelimb evoked potentials in both the adult rat cuneate nucleus and somatosensory cortex following contusive cervical spinal cord injury.
    Onifer SM; Nunn CD; Decker JA; Payne BN; Wagoner MR; Puckett AH; Massey JM; Armstrong J; Kaddumi EG; Fentress KG; Wells MJ; West RM; Calloway CC; Schnell JT; Whitaker CM; Burke DA; Hubscher CH
    Exp Neurol; 2007 Oct; 207(2):238-47. PubMed ID: 17678895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats.
    Batty NJ; Torres-Espín A; Vavrek R; Raposo P; Fouad K
    Exp Neurol; 2020 Feb; 324():113136. PubMed ID: 31786212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.