These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29533433)

  • 1. Laboratory Model of a Collapsible Tube to Develop Bleeding Control Interventions.
    Griffin LV; Kragh JF; Dubick MA
    J Spec Oper Med; 2018; 18(1):47-52. PubMed ID: 29533433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2001 Dec; 123(6):548-57. PubMed ID: 11783725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes.
    Bertram CD
    J Biomech; 1987; 20(9):863-76. PubMed ID: 3680312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical principles governing the interrelationships of pressure, flow and volume in collapsible tubes.
    Chiles C; Ravin CE
    Invest Radiol; 1981; 16(6):525-7. PubMed ID: 7319761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow through a collapsible tube. Experimental analysis and mathematical model.
    Katz AI; Chen Y; Moreno AH
    Biophys J; 1969 Oct; 9(10):1261-79. PubMed ID: 5824415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the impact of minor cannula design modification.
    Abdel-Sayed S; Favre J; Segesser LK
    Int J Artif Organs; 2012 Feb; 35(2):132-8. PubMed ID: 22388942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of external compression on venous blood flow and tissue deformation in the lower leg.
    Dai G; Gertler JP; Kamm RD
    J Biomech Eng; 1999 Dec; 121(6):557-64. PubMed ID: 10633254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siphon mechanism in collapsible tubes: application to circulation of the giraffe head.
    Hicks JW; Badeer HS
    Am J Physiol; 1989 Feb; 256(2 Pt 2):R567-71. PubMed ID: 2916707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow.
    Pedley TJ
    J Biomech Eng; 1992 Feb; 114(1):60-7. PubMed ID: 1491588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula.
    De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J
    ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new model of the vocal cords based on a collapsible tube analogy.
    Conrad WA
    Med Res Eng; 1980; 13(2):7-10. PubMed ID: 7401986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of flow parameters of a Newtonian fluid through a cylindrical collapsible tube.
    Kanyiri CW; Kinyanjui M; Giterere K
    Springerplus; 2014; 3():566. PubMed ID: 25332866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of flow and wall shear stress in the peroneal veins under external compression based on real-time MR images.
    Wang Y; Pierce I; Gatehouse P; Wood N; Firmin D; Xu XY
    Med Eng Phys; 2012 Jan; 34(1):17-27. PubMed ID: 21767973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data.
    Oyre S; Ringgaard S; Kozerke S; Paaske WP; Erlandsen M; Boesiger P; Pedersen EM
    J Am Coll Cardiol; 1998 Jul; 32(1):128-34. PubMed ID: 9669260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady flow through collapsible tubes: measurements of flow and geometry.
    Elad D; Sahar M; Avidor JM; Einav S
    J Biomech Eng; 1992 Feb; 114(1):84-91. PubMed ID: 1491591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of a thin walled collapsible microtube.
    Sipkema P; Westerhof N
    Ann Biomed Eng; 1989; 17(3):203-17. PubMed ID: 2735580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of flow through a rapidly oscillating tube with slowly varying amplitude.
    Whittaker RJ; Heil M; Waters SL
    Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):2989-3006. PubMed ID: 21690145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.