BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29533827)

  • 1. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.
    Kyzioł-Komosińska J; Augustynowicz J; Lasek W; Czupioł J; Ociński D
    J Environ Manage; 2018 May; 214():295-304. PubMed ID: 29533827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cr(III) and Cr(VI) removal from aqueous solutions by cheaply available fruit waste and algal biomass.
    Pakshirajan K; Worku AN; Acheampong MA; Lubberding HJ; Lens PN
    Appl Biochem Biotechnol; 2013 Jun; 170(3):498-513. PubMed ID: 23553106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents.
    Cavaco SA; Fernandes S; Augusto CM; Quina MJ; Gando-Ferreira LM
    J Hazard Mater; 2009 Sep; 169(1-3):516-23. PubMed ID: 19406569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Salvinia auriculata biomass as biosorbent of the Cr(III): directed chemical treatment, modeling and sorption mechanism study.
    Módenes AN; de Oliveira AP; Espinoza-Quiñones FR; Trigueros DEG; Kroumov AD; Borba CE; Hinterholz CL; Bergamasco R
    Environ Technol; 2017 Jun; 38(12):1474-1488. PubMed ID: 27662110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.
    Deng S; Ting YP
    Environ Sci Technol; 2005 Nov; 39(21):8490-6. PubMed ID: 16294892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of Callitriche cophocarpa Sendtn. for the reclamation of Cr-contaminated freshwater habitat: benefits and limitations.
    Augustynowicz J; Sitek E; Bryniarski T; Baran A; Ostachowicz B; Urbańska-Stopa M; Szklarczyk M
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25510-25522. PubMed ID: 32347505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia.
    Barrera H; Ureña-Núñez F; Bilyeu B; Barrera-Díaz C
    J Hazard Mater; 2006 Aug; 136(3):846-53. PubMed ID: 16504390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the involved sorption mechanisms of Cr(VI) and Cr(III) species onto dried Salvinia auriculata biomass.
    Módenes AN; de Oliveira AP; Espinoza-Quiñones FR; Trigueros DEG; Kroumov AD; Bergamasco R
    Chemosphere; 2017 Apr; 172():373-383. PubMed ID: 28088528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotherm kinetics of Cr(III) removal by non-viable cells of Acinetobacter haemolyticus.
    Yahya SK; Zakaria ZA; Samin J; Raj AS; Ahmad WA
    Colloids Surf B Biointerfaces; 2012 Jun; 94():362-8. PubMed ID: 22398363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass.
    Li J; Lin Q; Zhang X; Yan Y
    J Colloid Interface Sci; 2009 May; 333(1):71-7. PubMed ID: 19251269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of chromium (Cr(III)/Cr(VI)) on the residual microalga Nannochloris oculata after lipid extraction for biodiesel production.
    Kim EJ; Park S; Hong HJ; Choi YE; Yang JW
    Bioresour Technol; 2011 Dec; 102(24):11155-60. PubMed ID: 22014703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste--unusual isotherms and insights of binding mechanism.
    Witek-Krowiak A; Harikishore Kumar Reddy D
    Bioresour Technol; 2013 Jan; 127():350-7. PubMed ID: 23138058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kappaphycus alvarezii waste biomass: a potential biosorbent for chromium ions removal.
    Kang OL; Ramli N; Said M; Ahmad M; Yasir SM; Ariff A
    J Environ Sci (China); 2011; 23(6):918-22. PubMed ID: 22066214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater.
    Chen GQ; Zhang WJ; Zeng GM; Huang JH; Wang L; Shen GL
    J Hazard Mater; 2011 Feb; 186(2-3):2138-43. PubMed ID: 21247693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cr(VI) from aqueous solutions by fruiting bodies of the jelly fungus (Auricularia polytricha).
    Zheng S; Huang H; Zhang R; Cao L
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8729-36. PubMed ID: 24928657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III).
    Akhtar N; Iqbal M; Zafar SI; Iqbal J
    J Environ Sci (China); 2008; 20(2):231-9. PubMed ID: 18574966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brewers draff as a new low-cost sorbent for chromium (VI): comparison with other biosorbents.
    Sillerová H; Komárek M; Chrastný V; Novák M; Vaněk A; Drábek O
    J Colloid Interface Sci; 2013 Apr; 396():227-33. PubMed ID: 23415478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues.
    Chen Y; Tang G; Yu QJ; Zhang T; Chen Y; Gu T
    Environ Technol; 2009 Sep; 30(10):1003-10. PubMed ID: 19886424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds.
    Bhattacharya P; Banerjee P; Mallick K; Ghosh S; Majumdar S; Mukhopadhyay A; Bandyopadhyay S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(7):706-19. PubMed ID: 23445414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.